• 제목/요약/키워드: number of customers

Search Result 827, Processing Time 0.024 seconds

An Exploratory Study on Marketing of Financial Services Companies in Korea (한국 금융회사 마케팅 현황에 대한 탐색 연구)

  • Chun, Sung Yong
    • Asia Marketing Journal
    • /
    • v.12 no.2
    • /
    • pp.111-133
    • /
    • 2010
  • Marketing financial services used to be easier. Today, the competition in financial services is fierce. Not only has the competition become more intense, financial services have also changed structurally. In an environment with various customer needs and severe competitions, the marketing in financial services industry is getting more difficult and more important than before. However, there are still not enough studies on financial services marketing in Korea whereas lots of research papers have been published frequently in some international journals. The purpose of this paper is (1)to review the literature on financial services marketing, (2)to investigate current marketing activities based on in-depth interview with financial marketing managers in Korea, and (3)to suggest some implications for future research on the financial services marketing. Financial products are not consumer products. In fact, they are not products at all in the way product marketing is usually described. Nor are they altogether like services. The financial industry operates in a unique way, and its marketing tasks are correspondingly complex. However, the literature review shows that there has been a lack of basic studies which dealt with inherent characteristics of financial services marketing compared to the research on marketing in other industries. Many studies in domestic marketing journals have so far focused only on the general customer behaviors and the special issues in some financial industries. However, for more effective financial services marketing, we have to answer following questions. Is there any difference between financial service marketing and consumer packaged goods marketing? What are the differences between the financial services marketing and other services marketing such as education and health services? Are there different ways of marketing among banks, securities firms, insurance firms, and credit card companies? In other words, we need more detailed research as well as basic studies about the financial services marketing. For example, we need concrete definitions of financial services marketing, bank marketing, securities firm marketing, and etc. It is also required to compare the characteristics of each marketing within the financial services industry. The products sold in each market have different characteristics such as duration and degree of risk-taking. It means that there are sub-categories in financial services marketing. We have to consider them in the future research on the financial services marketing. It is also necessary to study customer decision making process in the financial markets. There have been little research on how customers search and process information, compare alternatives, make final decision, and repeat their choices. Because financial services have some unique characteristics, we need different understandings in the customer behaviors compared to the behaviors in other service markets. And also considering the rapid growth in financial markets and upcoming severe competition between domestic and global financial companies, it is time to start more systematic and detailed research on financial services marketing in Korea. In the second part of this paper, I analyzed the results of in-depth interview with 20 marketing managers of financial services companies in Korea. As a result, I found that the role of marketing departments in Korean financial companies are mainly focused on the short-term activities such as sales support, promotion, and CRM data analysis although the size and history of marketing departments to some extent show a sign of maturity. Most companies established official marketing departments before 2001. Average number of employees in a marketing department is about 58. However, marketing managers in eight companies(40% of the sample) still think that the purpose of marketing is only to support and manage general sales activities. It shows that some companies have sales-oriented concept rather than marketing-oriented concept. I also found three key words which marketing managers think importantly in financial services markets. They are (1)Trust in customer relationship, (2)Brand differentiation, and (3)Rapid response to customer needs. 50% of the sample support that "Trust" is the most important key word in the financial services marketing. It is interesting that 80% of banks and securities companies think that "Trust" is the most important thing, whereas managers in credit card companies consider "Rapid response to customer needs" as the most important key word in their market. In addition, there are different problems recognition of marketing managers depending on the types of financial industries they belong to. For example, in the case of banks and insurance companies, marketing managers consider "a lack of communication with other departments" as the most serious problem. On the other hand, in the case of securities firms, "a lack of utilization of customer data" is the most serious problem. These results imply that there are different important factors for the customer satisfaction depending on the types of financial industries, and managers have to consider them when marketing financial products in more effective ways. For example, It will be necessary for marketing managers to study different important factors which affect customer satisfaction, repeat purchase, degree of risk-taking, and possibility of cross-selling according to the types of financial industries. I also suggested six hypothetical propositions for the future research.

  • PDF

An Analysis of the Comparative Importance of Systematic Attributes for Developing an Intelligent Online News Recommendation System: Focusing on the PWYW Payment Model (지능형 온라인 뉴스 추천시스템 개발을 위한 체계적 속성간 상대적 중요성 분석: PWYW 지불모델을 중심으로)

  • Lee, Hyoung-Joo;Chung, Nuree;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.75-100
    • /
    • 2018
  • Mobile devices have become an important channel for news content usage in our daily life. However, online news content readers' resistance to online news monetization is more serious than other digital content businesses, such as webtoons, music sources, videos, and games. Since major portal sites distribute online news content free of charge to increase their traffics, customers have been accustomed to free news content; hence this makes online news providers more difficult to switch their policies on business models (i.e., monetization policy). As a result, most online news providers are highly dependent on the advertising business model, which can lead to increasing number of false, exaggerated, or sensational advertisements inside the news website to maximize their advertising revenue. To reduce this advertising dependencies, many online news providers had attempted to switch their 'free' readers to 'paid' users, but most of them failed. However, recently, some online news media have been successfully applying the Pay-What-You-Want (PWYW) payment model, which allows readers to voluntarily pay fees for their favorite news content. These successful cases shed some lights to the managers of online news content provider regarding that the PWYW model can serve as an alternative business model. In this study, therefore, we collected 379 online news articles from Ohmynews.com that has been successfully employing the PWYW model, and analyzed the comparative importance of systematic attributes of online news content on readers' voluntary payment. More specifically, we derived the six systematic attributes (i.e., Type of Article Title, Image Stimulation, Article Readability, Article Type, Dominant Emotion, and Article-Image Similarity) and three or four levels within each attribute based on previous studies. Then, we conducted content analysis to measure five attributes except Article Readability attribute, measured by Flesch readability score. Before conducting main content analysis, the face reliabilities of chosen attributes were measured by three doctoral level researchers with 37 sample articles, and inter-coder reliabilities of the three coders were verified. Then, the main content analysis was conducted for two months from March 2017 with 379 online news articles. All 379 articles were reviewed by the same three coders, and 65 articles that showed inconsistency among coders were excluded before employing conjoint analysis. Finally, we examined the comparative importance of those six systematic attributes (Study 1), and levels within each of the six attributes (Study 2) through conjoint analysis with 314 online news articles. From the results of conjoint analysis, we found that Article Readability, Article-Image Similarity, and Type of Article Title are the most significant factors affecting online news readers' voluntary payment. First, it can be interpreted that if the level of readability of an online news article is in line with the readers' level of readership, the readers will voluntarily pay more. Second, the similarity between the content of the article and the image within it enables the readers to increase the information acceptance and to transmit the message of the article more effectively. Third, readers expect that the article title would reveal the content of the article, and the expectation influences the understanding and satisfaction of the article. Therefore, it is necessary to write an article with an appropriate readability level, and use images and title well matched with the content to make readers voluntarily pay more. We also examined the comparative importance of levels within each attribute in more details. Based on findings of two studies, two major and nine minor propositions are suggested for future empirical research. This study has academic implications in that it is one of the first studies applying both content analysis and conjoint analysis together to examine readers' voluntary payment behavior, rather than their intention to pay. In addition, online news content creators, providers, and managers could find some practical insights from this research in terms of how they should produce news content to make readers voluntarily pay more for their online news content.

Resolving the 'Gray sheep' Problem Using Social Network Analysis (SNA) in Collaborative Filtering (CF) Recommender Systems (소셜 네트워크 분석 기법을 활용한 협업필터링의 특이취향 사용자(Gray Sheep) 문제 해결)

  • Kim, Minsung;Im, Il
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.137-148
    • /
    • 2014
  • Recommender system has become one of the most important technologies in e-commerce in these days. The ultimate reason to shop online, for many consumers, is to reduce the efforts for information search and purchase. Recommender system is a key technology to serve these needs. Many of the past studies about recommender systems have been devoted to developing and improving recommendation algorithms and collaborative filtering (CF) is known to be the most successful one. Despite its success, however, CF has several shortcomings such as cold-start, sparsity, gray sheep problems. In order to be able to generate recommendations, ordinary CF algorithms require evaluations or preference information directly from users. For new users who do not have any evaluations or preference information, therefore, CF cannot come up with recommendations (Cold-star problem). As the numbers of products and customers increase, the scale of the data increases exponentially and most of the data cells are empty. This sparse dataset makes computation for recommendation extremely hard (Sparsity problem). Since CF is based on the assumption that there are groups of users sharing common preferences or tastes, CF becomes inaccurate if there are many users with rare and unique tastes (Gray sheep problem). This study proposes a new algorithm that utilizes Social Network Analysis (SNA) techniques to resolve the gray sheep problem. We utilize 'degree centrality' in SNA to identify users with unique preferences (gray sheep). Degree centrality in SNA refers to the number of direct links to and from a node. In a network of users who are connected through common preferences or tastes, those with unique tastes have fewer links to other users (nodes) and they are isolated from other users. Therefore, gray sheep can be identified by calculating degree centrality of each node. We divide the dataset into two, gray sheep and others, based on the degree centrality of the users. Then, different similarity measures and recommendation methods are applied to these two datasets. More detail algorithm is as follows: Step 1: Convert the initial data which is a two-mode network (user to item) into an one-mode network (user to user). Step 2: Calculate degree centrality of each node and separate those nodes having degree centrality values lower than the pre-set threshold. The threshold value is determined by simulations such that the accuracy of CF for the remaining dataset is maximized. Step 3: Ordinary CF algorithm is applied to the remaining dataset. Step 4: Since the separated dataset consist of users with unique tastes, an ordinary CF algorithm cannot generate recommendations for them. A 'popular item' method is used to generate recommendations for these users. The F measures of the two datasets are weighted by the numbers of nodes and summed to be used as the final performance metric. In order to test performance improvement by this new algorithm, an empirical study was conducted using a publically available dataset - the MovieLens data by GroupLens research team. We used 100,000 evaluations by 943 users on 1,682 movies. The proposed algorithm was compared with an ordinary CF algorithm utilizing 'Best-N-neighbors' and 'Cosine' similarity method. The empirical results show that F measure was improved about 11% on average when the proposed algorithm was used

    . Past studies to improve CF performance typically used additional information other than users' evaluations such as demographic data. Some studies applied SNA techniques as a new similarity metric. This study is novel in that it used SNA to separate dataset. This study shows that performance of CF can be improved, without any additional information, when SNA techniques are used as proposed. This study has several theoretical and practical implications. This study empirically shows that the characteristics of dataset can affect the performance of CF recommender systems. This helps researchers understand factors affecting performance of CF. This study also opens a door for future studies in the area of applying SNA to CF to analyze characteristics of dataset. In practice, this study provides guidelines to improve performance of CF recommender systems with a simple modification.

  • Intelligent VOC Analyzing System Using Opinion Mining (오피니언 마이닝을 이용한 지능형 VOC 분석시스템)

    • Kim, Yoosin;Jeong, Seung Ryul
      • Journal of Intelligence and Information Systems
      • /
      • v.19 no.3
      • /
      • pp.113-125
      • /
      • 2013
    • Every company wants to know customer's requirement and makes an effort to meet them. Cause that, communication between customer and company became core competition of business and that important is increasing continuously. There are several strategies to find customer's needs, but VOC (Voice of customer) is one of most powerful communication tools and VOC gathering by several channels as telephone, post, e-mail, website and so on is so meaningful. So, almost company is gathering VOC and operating VOC system. VOC is important not only to business organization but also public organization such as government, education institute, and medical center that should drive up public service quality and customer satisfaction. Accordingly, they make a VOC gathering and analyzing System and then use for making a new product and service, and upgrade. In recent years, innovations in internet and ICT have made diverse channels such as SNS, mobile, website and call-center to collect VOC data. Although a lot of VOC data is collected through diverse channel, the proper utilization is still difficult. It is because the VOC data is made of very emotional contents by voice or text of informal style and the volume of the VOC data are so big. These unstructured big data make a difficult to store and analyze for use by human. So that, the organization need to automatic collecting, storing, classifying and analyzing system for unstructured big VOC data. This study propose an intelligent VOC analyzing system based on opinion mining to classify the unstructured VOC data automatically and determine the polarity as well as the type of VOC. And then, the basis of the VOC opinion analyzing system, called domain-oriented sentiment dictionary is created and corresponding stages are presented in detail. The experiment is conducted with 4,300 VOC data collected from a medical website to measure the effectiveness of the proposed system and utilized them to develop the sensitive data dictionary by determining the special sentiment vocabulary and their polarity value in a medical domain. Through the experiment, it comes out that positive terms such as "칭찬, 친절함, 감사, 무사히, 잘해, 감동, 미소" have high positive opinion value, and negative terms such as "퉁명, 뭡니까, 말하더군요, 무시하는" have strong negative opinion. These terms are in general use and the experiment result seems to be a high probability of opinion polarity. Furthermore, the accuracy of proposed VOC classification model has been compared and the highest classification accuracy of 77.8% is conformed at threshold with -0.50 of opinion classification of VOC. Through the proposed intelligent VOC analyzing system, the real time opinion classification and response priority of VOC can be predicted. Ultimately the positive effectiveness is expected to catch the customer complains at early stage and deal with it quickly with the lower number of staff to operate the VOC system. It can be made available human resource and time of customer service part. Above all, this study is new try to automatic analyzing the unstructured VOC data using opinion mining, and shows that the system could be used as variable to classify the positive or negative polarity of VOC opinion. It is expected to suggest practical framework of the VOC analysis to diverse use and the model can be used as real VOC analyzing system if it is implemented as system. Despite experiment results and expectation, this study has several limits. First of all, the sample data is only collected from a hospital web-site. It means that the sentimental dictionary made by sample data can be lean too much towards on that hospital and web-site. Therefore, next research has to take several channels such as call-center and SNS, and other domain like government, financial company, and education institute.

    Strategy for Store Management Using SOM Based on RFM (RFM 기반 SOM을 이용한 매장관리 전략 도출)

    • Jeong, Yoon Jeong;Choi, Il Young;Kim, Jae Kyeong;Choi, Ju Choel
      • Journal of Intelligence and Information Systems
      • /
      • v.21 no.2
      • /
      • pp.93-112
      • /
      • 2015
    • Depending on the change in consumer's consumption pattern, existing retail shop has evolved in hypermarket or convenience store offering grocery and daily products mostly. Therefore, it is important to maintain the inventory levels and proper product configuration for effectively utilize the limited space in the retail store and increasing sales. Accordingly, this study proposed proper product configuration and inventory level strategy based on RFM(Recency, Frequency, Monetary) model and SOM(self-organizing map) for manage the retail shop effectively. RFM model is analytic model to analyze customer behaviors based on the past customer's buying activities. And it can differentiates important customers from large data by three variables. R represents recency, which refers to the last purchase of commodities. The latest consuming customer has bigger R. F represents frequency, which refers to the number of transactions in a particular period and M represents monetary, which refers to consumption money amount in a particular period. Thus, RFM method has been known to be a very effective model for customer segmentation. In this study, using a normalized value of the RFM variables, SOM cluster analysis was performed. SOM is regarded as one of the most distinguished artificial neural network models in the unsupervised learning tool space. It is a popular tool for clustering and visualization of high dimensional data in such a way that similar items are grouped spatially close to one another. In particular, it has been successfully applied in various technical fields for finding patterns. In our research, the procedure tries to find sales patterns by analyzing product sales records with Recency, Frequency and Monetary values. And to suggest a business strategy, we conduct the decision tree based on SOM results. To validate the proposed procedure in this study, we adopted the M-mart data collected between 2014.01.01~2014.12.31. Each product get the value of R, F, M, and they are clustered by 9 using SOM. And we also performed three tests using the weekday data, weekend data, whole data in order to analyze the sales pattern change. In order to propose the strategy of each cluster, we examine the criteria of product clustering. The clusters through the SOM can be explained by the characteristics of these clusters of decision trees. As a result, we can suggest the inventory management strategy of each 9 clusters through the suggested procedures of the study. The highest of all three value(R, F, M) cluster's products need to have high level of the inventory as well as to be disposed in a place where it can be increasing customer's path. In contrast, the lowest of all three value(R, F, M) cluster's products need to have low level of inventory as well as to be disposed in a place where visibility is low. The highest R value cluster's products is usually new releases products, and need to be placed on the front of the store. And, manager should decrease inventory levels gradually in the highest F value cluster's products purchased in the past. Because, we assume that cluster has lower R value and the M value than the average value of good. And it can be deduced that product are sold poorly in recent days and total sales also will be lower than the frequency. The procedure presented in this study is expected to contribute to raising the profitability of the retail store. The paper is organized as follows. The second chapter briefly reviews the literature related to this study. The third chapter suggests procedures for research proposals, and the fourth chapter applied suggested procedure using the actual product sales data. Finally, the fifth chapter described the conclusion of the study and further research.

    Effects of TR and Consumer Readiness on SST Usage Motivation, Attitude and Intention (기술 준비도와 소비자 준비도가 Self Service Technology 사용동기와 태도 및 사용의도에 미치는 영향)

    • Shim, Hyeon Sook;Han, Sang Lin
      • Asia Marketing Journal
      • /
      • v.14 no.1
      • /
      • pp.25-51
      • /
      • 2012
    • Researches about the relationship between SST(Self Service Technology) and TRI(Technology Readiness Index) have been carried out after TRI was developed by Parasuraman and his colleagues(2000). We hypothesize Consumer Readiness can also influence consumer's motivation, attitude, and intent to use SST. Currently, there has been no research on this subject. In this study, we investigated the relationship between TR, Consumer Readiness and SST Core Attitudinal Model which Dabholkar & Bagozzi(1994) proposed. The researchers also investigated moderating effects of consumer traits and situational factors to verify the acceptance of such forms of service delivery by all kinds of consumers and under different situational contexts. Self consciousness, the need for interaction with an employee, and the technology anxiety were used as consumer trait variables. Perceived waiting time and perceived crowding were used as situational variables. 380 questionnaires were distributed to a sample group of people in their 20's and 30's, and the data were analyzed with structural equation model using AMOS 18.0 program. All of Cronbach's alpha values representing reliabilities were satisfactory. The values of Composite Reliability(CR) and Average Variance Extracted(AVE) also showed the above criteria, thus providing evidence of convergent validity. To confirm discriminant validity among the constructs, confirmatory factor analysis and correlations among all the variables were examined. The results were satisfactory. The results of this study are summarized as follows. 1. Optimism and innovativeness of TR partially influenced the motivation to use SST. People who tend to be optimistic use SST because of ease of use and fun. The innovative however, usually use SST due to its performance. However, consumer readiness of role clarity, ability and self-efficacy influence all the components of motivation to use SST, ease of use, performance and fun. The relative effect of consumer readiness on the motivation to use SST was much stronger and more significant than that of TR. No other previous studies have examined the effects of Consumer Readiness on SST usage motivation, attitude and intention. It is academically meaningful that the researchers verified that Consumer Readiness is the important precedent construct influencing the self service technology core Attitudinal Model. Our findings suggest that marketers should consider fun and ease of use attributes to promote the use of self service technology. In addition, the SST usage frequency will rise rapidly when role clarity, ability, and self-efficacy which anybody can easily handle SST is assured. If the SST usage rate is increased, waiting times for customers could be decreased. Shorter waiting time could lead to higher customer satisfaction. It may also result in making a long-term profit owing to the reduced number of employees. Thus, presentation of using SST by employees or videos showing how to use it will promote the usage attitude and intent. 2. In SST core attitudinal model, performance and fun factors among SST usage motivation affected attitudes of using SST. The attitude of using SST highly influenced intent to use SST. This result is consistent with previous researches that dealt with the relationship between motivation, attitude and intention. Expectation of using SST could result in good performance just like the effect of ordering menu to service employees and to have fun since fun during its use could promote more SST usage rate. 3. In the relationship among motivation, attitude and intent in SST core attitudinal model, the moderating effect of consumer traits(self-consciousness, need for interaction with service employees and technology anxiety) and situational factors(perceived crowding and perceived waiting time) were tested. The results also supported the hypothesized moderating effects except perceived crowding. The highly self-conscious tended to form attitudes to use SST because of its fun compared to those who were less self-conscious because of its performance. People who had a high need for interaction with service employees tended to use SST for its performance. This result indicates that if ordering results are assured, SST is easily accessible to even consumers who have a high need for interaction with a service employee. When SST is easy to use, attitudes strengthen intent among people who had a high level of anxiety of technology. People who had low technology anxiety formed attitudes to use SST because of its performance. Service firms must ensure their self service technology is designed to be easy to use for those who have a high level of technology anxiety. Shorter perceived waiting times strengthened the attitude to use self service technology because of its fun. If the fun aspect is assured, people willing to use self service technology even perceive waiting time to be shorter than it actually is. Greater perceived waiting times form higher level of intent to use self service technology than those of shorter perceived waiting times. This implies that people view self service technology as a faster alternative to ordering service employees. The fun aspect of self service technology will attract a higher rate of usage for self service technology. 4. It has been proven that ease of use, performance and fun aspects are very important factors in motivation to form attitudes and intent to use self service technology regardless of the amount of perceived waiting time, self-consciousness, need for interaction with service employees, and technology anxiety. Service firms must consider these motivation aspects(ease of use, performance and fun)strongly in their promotion to use self service technology. Ease of use, assuring absolute performance compared to interaction with service employees', and adding a fun aspect will positively strengthen consumers' attitudes and intent to use self service technology. Summarizing the moderating effects, fun is the most valuable factor triggering SST usage attitude and intention. Therefore, designing self service technology to be fun will be the key to its success. This study focused on the touch screen self service technology in fast food restaurant. Although it has its limits due to the fact that it is hard to generalize the results to any other self service technology, the conceptual framework of this study can be applied to future research of any other service site.

    • PDF

    SKU recommender system for retail stores that carry identical brands using collaborative filtering and hybrid filtering (협업 필터링 및 하이브리드 필터링을 이용한 동종 브랜드 판매 매장간(間) 취급 SKU 추천 시스템)

    • Joe, Denis Yongmin;Nam, Kihwan
      • Journal of Intelligence and Information Systems
      • /
      • v.23 no.4
      • /
      • pp.77-110
      • /
      • 2017
    • Recently, the diversification and individualization of consumption patterns through the web and mobile devices based on the Internet have been rapid. As this happens, the efficient operation of the offline store, which is a traditional distribution channel, has become more important. In order to raise both the sales and profits of stores, stores need to supply and sell the most attractive products to consumers in a timely manner. However, there is a lack of research on which SKUs, out of many products, can increase sales probability and reduce inventory costs. In particular, if a company sells products through multiple in-store stores across multiple locations, it would be helpful to increase sales and profitability of stores if SKUs appealing to customers are recommended. In this study, the recommender system (recommender system such as collaborative filtering and hybrid filtering), which has been used for personalization recommendation, is suggested by SKU recommendation method of a store unit of a distribution company that handles a homogeneous brand through a plurality of sales stores by country and region. We calculated the similarity of each store by using the purchase data of each store's handling items, filtering the collaboration according to the sales history of each store by each SKU, and finally recommending the individual SKU to the store. In addition, the store is classified into four clusters through PCA (Principal Component Analysis) and cluster analysis (Clustering) using the store profile data. The recommendation system is implemented by the hybrid filtering method that applies the collaborative filtering in each cluster and measured the performance of both methods based on actual sales data. Most of the existing recommendation systems have been studied by recommending items such as movies and music to the users. In practice, industrial applications have also become popular. In the meantime, there has been little research on recommending SKUs for each store by applying these recommendation systems, which have been mainly dealt with in the field of personalization services, to the store units of distributors handling similar brands. If the recommendation method of the existing recommendation methodology was 'the individual field', this study expanded the scope of the store beyond the individual domain through a plurality of sales stores by country and region and dealt with the store unit of the distribution company handling the same brand SKU while suggesting a recommendation method. In addition, if the existing recommendation system is limited to online, it is recommended to apply the data mining technique to develop an algorithm suitable for expanding to the store area rather than expanding the utilization range offline and analyzing based on the existing individual. The significance of the results of this study is that the personalization recommendation algorithm is applied to a plurality of sales outlets handling the same brand. A meaningful result is derived and a concrete methodology that can be constructed and used as a system for actual companies is proposed. It is also meaningful that this is the first attempt to expand the research area of the academic field related to the existing recommendation system, which was focused on the personalization domain, to a sales store of a company handling the same brand. From 05 to 03 in 2014, the number of stores' sales volume of the top 100 SKUs are limited to 52 SKUs by collaborative filtering and the hybrid filtering method SKU recommended. We compared the performance of the two recommendation methods by totaling the sales results. The reason for comparing the two recommendation methods is that the recommendation method of this study is defined as the reference model in which offline collaborative filtering is applied to demonstrate higher performance than the existing recommendation method. The results of this model are compared with the Hybrid filtering method, which is a model that reflects the characteristics of the offline store view. The proposed method showed a higher performance than the existing recommendation method. The proposed method was proved by using actual sales data of large Korean apparel companies. In this study, we propose a method to extend the recommendation system of the individual level to the group level and to efficiently approach it. In addition to the theoretical framework, which is of great value.


    (34141) Korea Institute of Science and Technology Information, 245, Daehak-ro, Yuseong-gu, Daejeon
    Copyright (C) KISTI. All Rights Reserved.