• 제목/요약/키워드: number of bolt

검색결과 104건 처리시간 0.026초

인발시험을 통한 스파이럴 볼트의 지보특성 (Supporting Characteristics of a Spiral Bolt through Pull-out Test)

  • 김장원;강추원;송하림
    • 화약ㆍ발파
    • /
    • 제29권1호
    • /
    • pp.10-16
    • /
    • 2011
  • 대규모 사면이나 암반구조물의 불안정한 지반을 새로운 평형상태로 유지시키기 위한 지보재로서 그라운 드 앵커, 케이블 볼트, 록 볼트와 최근 새로운 형태로 개발된 지보재인 스파이럴 볼트가 있다. 이에 본 연구에서는 현재 가장 널리 이용되고 있는 지보재인 록 볼트와 새롭게 개발되고 있는 스파이럴 볼트를 대상으로 터널 내 현장 인발시험을 수행하여 지보재의 특성을 분석하였다. 최대인발하중의 변화 양상을 살펴보기 위해 수행한 스파이럴 볼트와 록 볼트에 대한 3회 재인발시험의 결과를 보면 스파이럴 볼트의 경우는 인발시험 횟수에 관계 없이 거의 일정함을 보였는데, 이것은 지보재가 최대인발하중에 도달할지라도 스파이럴 볼트와 충전재 사이에 파괴가 거의 일어나지 않으므로 일정한 최대인발하중을 보이는 것으로 판단된다. 반면에 록 볼트의 경우 인발시 험의 횟수가 증가할수록 인발하중은 점점 감소하였는데, 이것은 지보재가 최대인발하중에 도달할 때 록 볼트와 충전재 사이에 일부분 파괴가 발생함으로 인해서 나타나는 현상으로 판단된다.

Evaluating the pull-out load capacity of steel bolt using Schmidt hammer and ultrasonic pulse velocity test

  • Saleem, Muhammad
    • Structural Engineering and Mechanics
    • /
    • 제65권5호
    • /
    • pp.601-609
    • /
    • 2018
  • Steel bolts are used in the construction industry for a large variety of applications that range from fixing permanent installations to temporary fixtures. In the past much research has been focused on developing destructive testing techniques to estimate their pull-out load carrying capacity with very little attention to develop non-destructive techniques. In this regards the presented research work details the combined use of ultrasonic pulse velocity and Schmidt hammer tests to identify anchor bolts with faculty installation and to estimate their pull-out strength by relating it to the Schmidt hammer rebound value. From experimentation, it was observed that the load capacity of bolt depends on its embedment length, diameter, bond quality/concrete strength and alignment. Ultrasonic pulse velocity test is used to judge the quality of bond of embedded anchor bolt by relating the increase in ultrasonic pulse transit time to the presence of internal pours and cracks in the vicinity of steel bolt and the surrounding concrete. This information combined with the Schmidt hammer rebound number, R, can be used to accurately identify defective bolts which resulted in lower pull-out strength. 12 mm diameter bolts with embedment length of 70 mm and 50 mm were investigated using constant strength concrete. Pull-out load capacity versus the Schmidt hammer rebound number for each embedment length is presented.

개방형 프레임 구조물의 볼트 조인트 강도해석 (Strength Analysis of Bolt Joints for an Open Frame Structure)

  • 이진민;이민욱;조수길;구만회;김학인;이태희
    • 대한기계학회논문집A
    • /
    • 제33권8호
    • /
    • pp.819-825
    • /
    • 2009
  • An open frame structure is fastened by bolt joints for strength and shock attenuation. Therefore the full finite element model of an open frame structure should be properly modeled including bolt joints for strength analysis of the frames and joint assemblies which are operated under multi-loading conditions such as driving, drop, inertia and torsional loads. Then the joints and frames must satisfy the specified allowable strength constraints. Because the full finite element model has a large number of elements to perform strength analysis, a detailed fine bolt analysis seems to be very expensive. Therefore bolts of the full finite element model are approximately modeled by coupling method to constrain degree of freedoms between adjacent nodes. However, the coupling method can exaggerate stress results at the constrained nodes. Thus a detailed bolt analysis and a theoretical/experiential formula of bolts for a worst bolt joint are performed using reaction force applied both bolt and bolt joint. Finally, the results from the two methods are compared and discussed to verify the safety of the open frame structure.

개방형 프레임 구조물의 볼트 조인트 강도설계 (Strength Design of Bolt Joints for an Open Frame Structure)

  • 이진민;이민욱;조수길;구만회;김학인;이태희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.523-528
    • /
    • 2008
  • An open frame structure is fastened by bolt joints for strength and shock attenuation. Therefore the full finite element model of an open frame structure should be properly modeled including bolt joints for strength analysis of the frames and joint assemblies which are operated under multi-loading conditions such as driving, drop, inertia and torsional loads. Then the joints and frames must satisfy the specified allowable strength constraints. Because the full finite element model has a large number of elements to perform strength analysis, a detailed fine bolt analysis seems to be very expensive. Therefore bolts of the full finite element model are approximately modeled by constraints equations to constrain degree of freedoms between adjacent nodes. However, the constraints equation method can exaggerate stress results at the constrained nodes. Thus a detailed bolt analysis and a theoretical/experiential formula of bolts for a worst bolt joint are performed using reaction force applied both bolt and bolt joint. Finally, the results from the two methods are compared and discussed to verify the safety of the open frame structure.

  • PDF

EMI based multi-bolt looseness detection using series/parallel multi-sensing technique

  • Chen, Dongdong;Huo, Linsheng;Song, Gangbing
    • Smart Structures and Systems
    • /
    • 제25권4호
    • /
    • pp.423-432
    • /
    • 2020
  • In this paper, a novel but practical approach named series/parallel multi-sensing technique was proposed to evaluate the bolt looseness in a bolt group. The smart washers (SWs), which were fabricated by embedding a Lead Zirconate Titanate (PZT) transducer into two flat metal rings, were installed to the bolts group. By series connection of SWs, the impedance signals of different bolts can be obtained through only one sweep. Therefore, once the loosening occurred, the shift of different peak frequencies can be used to locate which bolt has loosened. The proposed multi input single output (MISO) damage detection scheme is very suitable for the structural health monitoring (SHM) of joint with a large number of bolts connection. Another notable contribution of this paper is the proposal of 3-dB bandwidth root mean square deviation (3 dB-RMSD) which can quantitatively evaluate the severity of bolt looseness. Compared with the traditional naked-eye observation method, the equivalent circuit based 3-dB bandwidth can accurately define the calculation range of RMSD. An experiment with three bolted connection specimens that installed the SWs was carried out to validate our proposed approach. Experimental result shows that the proposed 3 dB-RMSD based multi-sensing technique can not only identify the loosened bolt but also monitor the severity of bolt looseness.

볼트 체결 조건에 따른 두 판재의 동적 특성 예측 (Prediction of the Dynamic Characteristics of a Bolt-Joint Plates According to Bolting Conditions)

  • 홍상준;이동진;유정훈
    • 대한기계학회논문집A
    • /
    • 제29권9호
    • /
    • pp.1175-1182
    • /
    • 2005
  • General systems have many substructures assembled at joints. The bolted joint is generally used in assembling the mechanical parts. However, there are no effective modeling methods to analyze the dynamic characteristics of bolt jointed structure using the finite element (FE) analysis, especially in case of large area contact. Moreover, the design methods for the appropriate bolt locations and the number of bolts considering the dynamic characteristics are not guided properly. In this study, a proper modeling method is developed to simulate the dynamic characteristics of a structure with the large interfaced area using the cone frusta method and spring elements. The natural frequencies are also controlled by adjusting the bolt-joint location and the number of bolts considering relative distances in mode shapes at the interface of bolt-jointed plates. The Modeling method and the optimized design method are verified based on the experimental and the FE analysis results.

Effect of plate properties on shear strength of bolt group in single plate connection

  • Ashakul, Aphinat;Khampa, Kriangkrai
    • Steel and Composite Structures
    • /
    • 제16권6호
    • /
    • pp.611-637
    • /
    • 2014
  • A single plate shear connection, or shear tab, is a very popular shear connection due to its merit in ease of construction and material economy. However, problems in understanding the connection behavior, both in terms of strength and ductility, have been well-documented. Suggestions or design model for single plate connections in AISC Design Manual have been altered several times, with the latest edition settling down to giving designers pre-calculated design strength tables if the connection details agree with given configurations. Results from many full-scale tests and finite element models in the past suggest that shear strength of a bolt group in single plate shear connections might be affected by yield strength of plate material; therefore, this research was aimed to investigate and clarify effects of plate yield strength and thickness on shear strength of the bolt group in the connections, including the validity of using a plate thickness/bolt diameter ratio ($t_p/d_b$) in design, by using finite element models. More than 20 models have been created by using ABAQUS program with 19.0- and 22.2-mm A325N bolts and A36 and Gr.50 plates with various thicknesses. Results demonstrated that increase of plate thickness or plate yield strength, with the $t_p/d_b$ ratio remained intact, could significantly reduce shear strength of the bolt group in the connection as much as 15 percent. Results also confirmed that the $t_p/d_b$ ratio is a valid indicator to be used for guaranteeing strength sufficiency. Because the actual ratio recommended by AISC Design Manual is $t_p/d_b$ + 1.6 (mm) for connections with a number of bolts less than six and plate yield strength in construction is normally higher than the nominal value used in design, it is proposed that shear strength of a bolt group in single plate connections with a number of bolts equal or greater than seven be reduced by 15 percent and the $t_p/d_b$ ratio be limited to 0.500.

볼트 수 변경에 따른 플랜지 커플링에 대한 구조해석 (Structural Analysis on Flange Coupling due to Change of Bolt Numbers)

  • 한문식;조재웅
    • 한국기계가공학회지
    • /
    • 제12권5호
    • /
    • pp.57-66
    • /
    • 2013
  • This study investigates structural and vibration analyses due to the change of bolt Numbers on models 1 and 2 of flange couplings connected with both sides of axis. As maximum equivalent stresses of models 1 and 2 are 122.05 and 102.3 MPa respectively by the basis of bolt, these stresses are within the allowable stress of this model and the safety of bolt design is verified. As maximum equivalent stresses of models 1 and 2 are 196.2 and 196.4 MPa respectively by the basis of body, these stresses are within the allowable stress of this model and the safety of body design is verified. Through natural frequency analysis, maximum displacements of model 1 and 2 are shown at the frequencies of 6565.1 and 6614.9 Hz respectively. Maximum displacements in cases of models 1 and 2 are shown at harmonic frequencies of 7760 and 7840 Hz at real loading conditions. By putting these study results together, the durability of vibration at model 2 with bolt numbers of 8 becomes better than model 1 with bolt numbers of 6. These study results can be effectively utilized with the design on flange coupling by anticipating and investigating prevention and durability against its damage.

Experimental evaluation of the active tension bolt

  • Kim, Sang-Hwan;Song, Ki-Il;Park, Jae-Hyun
    • Geomechanics and Engineering
    • /
    • 제11권2호
    • /
    • pp.177-195
    • /
    • 2016
  • To secure the stability of geotechnical infrastructures and minimize failures during the construction process, a number of support systems have been introduced in the last several decades. In particular, stabilization methods using steel bars have been widely used in the field of geotechnical engineering. Rock bolt system is representative support system using steel bars. Pre-stressing has been applied to enhance reinforcement performance but can be released because of the failure of head or anchor sections. To overcome this deficiency, this paper proposes an innovative support system that can actively reinforce the weak ground along the whole structural element by introducing an active tension bolt containing a spring unit to the middle of the steel bar to increase its reinforcement capacity. In addition, the paper presents the support mechanism of the active tension bolt based on a theoretical study and employs an experimental study to validate the performance of the proposed active tension bolt based on a down-scaled model. To examine the feasibility of the active tension unit in a pillar, the paper considers a pullout test and a small-scale experimental model. The experimental results suggest the active tension bolt to be an effective support system for pillar reinforcement.

볼트 간격에 따른 낙엽송 집성재 이중 볼트접합부의 전단강도 (Lateral Strength of Double-Bolt Joints to the Larix Glulam according to Bolt Spacing)

  • 김건호;홍순일
    • Journal of the Korean Wood Science and Technology
    • /
    • 제36권3호
    • /
    • pp.1-8
    • /
    • 2008
  • 볼트 간격에 따른 국내산 낙엽송 집성재 이중 볼트접합부의 내력성능을 검토하기 위하여 휨 type 전단강도실험을 실시하였다. 전단시편은 강판삽입형 볼트접합부 시편으로서 볼트구멍은 볼트직경(12 mm, 16 mm), 볼트 개수(단일 볼트 : Control, 이중 볼트), 볼트 열 방향(섬유평행 : Type-A, 섬유직교 : Type-B) 그리고 볼트 간격(Type-A : 4 d, 7 d, Type-B : 3 d, 5 d)을 달리하여 제작하였다. 조건에 따른 볼트접합부의 강도성능과 파괴형상을 비교, 검토하였다. 설계표준(KBCS, 2000)시 볼트간격이 감소된 기준허용전단내력에 대한 저감계수를 산출하였다. 본 연구의 결과는 다음과 같다. 1) 단일 볼트접합부와 Type-A의 이중 볼트접합부의 볼트 한 개당 지압응력은 볼트의 직경, 볼트 간격과 비례 관계를 보여주었다. Type-B의 지압응력은 볼트의 직경이 증가할 때 감소하였고, 볼트 간격이 증가할 때 2~10% 정도 감소하였다. 2) 단일 볼트접합부와 Type-A의 이중 볼트접합부의 파괴형상은 연단거리 방향으로 할렬파단이 일어났다. Type-B의 경우 볼트간격이 3 d일 때 인장부위 볼트가 압축부위 볼트보다 더 굴곡되었고 인장부위볼트에서 할렬파단이 시작되었다. 5 d 시편의 경우 인장부위와 압축부위 볼트의 굴곡은 비슷하게 나타났으며, 압축부위볼트에서 할렬파단이 시작되었다. 3) 설계표준시 기준볼트 간격(Type A : 7 d, Type B : 5 d)에 따른 항복하중을 무차원화시켜 저감계수를 산출하였다. 12 mm 볼트접합부의 경우 Type-A인 볼트 간격 4d와 단일 볼트접합부의 저감계수는 각각 0.87, 0.55였고 Type-B인 볼트 간격 3 d와 단일 볼트접합부의 저감계수는 0.91, 0.55였다. 16 mm 볼트접합부의 경우 Type-A인 볼트 간격 4 d와 단일 볼트접합부의 저감계수는 0.96, 0.76이었고 Type-B인 볼트 간격 3 d, 단일 볼트접합부의 저감계수는 0.91, 0.77이었다.