• Title/Summary/Keyword: number and quantify

Search Result 287, Processing Time 0.023 seconds

Repeat analysis of intraoral digital imaging performed by undergraduate students using a complementary metal oxide semiconductor sensor: An institutional case study

  • Yusof, Mohd Yusmiaidil Putera Mohd;Rahman, Nur Liyana Abdul;Asri, Amiza Aqiela Ahmad;Othman, Noor Ilyani;Mokhtar, Ilham Wan
    • Imaging Science in Dentistry
    • /
    • v.47 no.4
    • /
    • pp.233-239
    • /
    • 2017
  • Purpose: This study was performed to quantify the repeat rate of imaging acquisitions based on different clinical examinations, and to assess the prevalence of error types in intraoral bitewing and periapical imaging using a digital complementary metal-oxide-semiconductor(CMOS) intraoral sensor. Materials and Methods: A total of 8,030 intraoral images were retrospectively collected from 3 groups of undergraduate clinical dental students. The type of examination, stage of the procedure, and reasons for repetition were analysed and recorded. The repeat rate was calculated as the total number of repeated images divided by the total number of examinations. The weighted Cohen's kappa for inter- and intra-observer agreement was used after calibration and prior to image analysis. Results: The overall repeat rate on intraoral periapical images was 34.4%. A total of 1,978 repeated periapical images were from endodontic assessment, which included working length estimation (WLE), trial gutta-percha (tGP), obturation, and removal of gutta-percha (rGP). In the endodontic imaging, the highest repeat rate was from WLE (51.9%) followed by tGP (48.5%), obturation (42.2%), and rGP (35.6%). In bitewing images, the repeat rate was 15.1% and poor angulation was identified as the most common cause of error. A substantial level of intra- and inter-observer agreement was achieved. Conclusion: The repeat rates in this study were relatively high, especially for certain clinical procedures, warranting training in optimization techniques and radiation protection. Repeat analysis should be performed from time to time to enhance quality assurance and hence deliver high-quality health services to patients

Potential Risk Factors for Breast Cancer in Pakistani Women

  • Bano, Raisa;Ismail, Muhammad;Nadeem, Aamer;Khan, Mohammad Haroon;Rashid, Hamid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.9
    • /
    • pp.4307-4312
    • /
    • 2016
  • Background: Breast cancer is the most common female malignancy worldwide and its incidence is on the rise in Pakistan. The aim of this case-control study was to quantify the association of various risk factors with breast cancer risk among Pakistani women. Materials and Methods: A total of 2,246 women were studied, including 1,238 women with histologically confirmed breast cancer patients and age matched control subjects (N=1008) without breast cancer and other chronic diseases. Subjects were interviewed using a specifically designed questionnaire. Unconditional logistic regression was applied. Subsequent disease-specific mortality was also measured. Results: In this study, majority of the breast cancer patients (69.59%) were in age ranges of 40s and 50s. BMI greater than 25kg/m2 (OR=1.57; 95%CI, 1.26-1.90 and OR=1.60; 95%CI, 1.26-2.03), marital status of unmarried (OR=2.03; 95%CI, 1.69-2.44), lack of breast feeding, smoking (current or ever), lack of physical activity and post-menopausal status were found to have significant positive associations with breast cancer. It was also observed that increased parity reduced the disease risk. A larger number of cases (58.1%) had their right breast affected while 22.8% had other complications as well. Conclusions: This exploratory analysis indicated a number of risk factors to be associated with increased risk of breast cancer. It was also observed that mean age at diagnosis is a decade earlier than in western countries. It is hoped that our findings will facilitate establishment of adequate evidence-based awareness and preventive measures for Pakistani women.

Estimation of Genetic Variance Components of Body Size Measurements in Hanwoo (Korean Cattle) Using a Multivariate Linear Model

  • Lee, Jung-Jae;Kim, Nae-Soo
    • Journal of Animal Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.167-174
    • /
    • 2010
  • The objectives of this study were to quantify the combination values of the principal components and factors calculated using body measurements of Hanwoo (Korean Cattle) and estimate their heritabilities. The technique of multivariate analysis was used to reduce a large number of variables to a smaller number of new variables and characterize cattle according to body shape. The analyses were performed using 1,979 cattle at 12 months of age and 936 cattle at 24 months of age. The data for the analyses was obtained from progeny tests performed on Korean Cattle for 6 years from 2003 to 2008. The phenotypic correlations among these traits were estimated to range from 0.32 to 0.90 at 12 months of age and from 0.21 to 0.82 at 24 months of age. The first principal components (PC1s) indicated a weighed average of overall body measurements, accounting for 99.91% of the total variation for both periods of test. The two first PCs had positive coefficients for all body measurements. The major sources of PC, such as chest girth (CG), body length (BL), rump height (RH), and wither height (WH) were similar for both test periods. The heritabilities for PC1, the first factor score (FS1), and the second factor score (FS2) were estimated by multivariate REML method. The estimated heritabilities for PC1, FS1, and FS2 were 0.33, 0.38, and 0.40, respectively, at 12 months of age and 0.26, 0.76, and 0.58 at 24 months of age. Further studies are needed to determine whether the heritabilities of FS1 and FS2 at 24 months of age were overestimated.

Effect of High-Intensity Interval Training on Acute Liver Failure Induced by D-Galactosamine/Lipopolysaccharide in Balb/c Mice (고강도 인터벌 트레이닝이 D-Gal/LPS로 유도된 마우스의 급성 간 부전에 미치는 효과)

  • Cho, Jin-Kyung;Park, Soo-Hyun;Kang, Hyun-Sik
    • Exercise Science
    • /
    • v.26 no.3
    • /
    • pp.223-228
    • /
    • 2017
  • PURPOSE: This study investigated the protective role of high-intensity interval training against acute liver injury induced by D-galactosamine (D-Gal)/lipopolysaccharide (LPS). METHODS: A total of 30 male BALB/c mice aged 5-week were randomly assigned to high-intensity, interval training group (EX, n=10) or control group in cage (Non-EX, n=20) for 10 weeks. Peritoneal injection of D-Gal (700 mg/kg body weight) and LPS ($10{\mu}g/kg$ body weight) was applied to induce acute liver injury, and liver tissue was harvested 6 hours after the injection. Hematoxylin and Eosin (H&E) staining was used for liver histology. Real-time PCR was used to quantify expression of pro-inflammatory and anti-inflammatory genes in the liver. RESULTS: The liver histology showed that D-Gal/LPS treatment resulted in hepatic damage and increased number of neutrophils in conjunction with upregulation of hepatic IL-6 and $TNF-{\alpha}$ mRNAs and downregulation of hepatic $PPAR{\alpha}$ and SIRT1 mRNAs. On the other hand, the 10-week interval training resulted in a significant improvement in cardiorespiratory fitness assessed as run time to exhaustion on a treadmill. In addition, the interval training attenuated the D-Gal/LPS-induced liver damage and increased number of neutrophil in conjunction with downregulation of hepatic IL-6 and $TNF-{\alpha}$ mRNAs and upregulation of hepatic $PPAR{\alpha}$ and SIRT1 mRNAs. CONCLUSIONS: This study suggests that high-intensity interval training suppresses the D-Gal and LPS-induced acute liver damage and inflammatory responses.

Three-dimensional kinematic motion analysis of door handling task in people with mild and moderate stroke

  • Lee, Jung Ah;Kim, Eun Joo;Hwang, Pil Woo;Park, Han Ram;Bae, Jae Hyuk;Kim, Jae Nam
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.3
    • /
    • pp.143-148
    • /
    • 2016
  • Objective: This study aimed to quantify one of the useful upper extremity movements to evaluate motor control abilities between the groups of people with mild and moderate arm impairments performing a door handling task. Design: Cross-sectional study. Methods: Twenty-one healthy participants and twenty-one persons with chronic stroke (9 mild stroke and 12 moderate stroke) were recruited for this study. Stroke participants were divided into 2 groups based on Fugle-Meyer Assessment scores of 58-65 (mild arm) and 38-57 (moderate arm). All they performed door handling task including the pronation and supination phases 3 times. We measured some movement factors which were reaction time, movement time, hand of peak velocity, hand of movement units to perform door handling task using the three-dimensional motion analysis. Results: The majority of kinematic variables showed significant differences among study groups (p<0.05). The reaction time, total and phase of movement time, hand of peak velocity, the number of movement units discriminated between healthy participants and persons with moderate upper limb stroke (p<0.05). In addition, reaction time, total and phase of movement time, the number of movement units discriminated between those with moderate and mild upper limbs of stroke patients (p<0.05). Conclusions: Three-dimensional kinematic motion analysis in this study was a useful tool for assessing the upper extremity function in different subgroups of people with stroke during the door handling task. These kinematic variables may help clinicians understand the arm movements in door handling task and consist of discriminative therapeutic interventions for stroke patients on upper extremity rehabilitation.

Calculation models and stability of composite foundation treated with compaction piles

  • Cheng, Xuansheng;Jing, Wei
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.929-946
    • /
    • 2017
  • Composite foundation treated with compaction piles can eliminate collapsibility and improve the bearing capacity of foundation in loess area. However, the large number of piles in the composite foundation leads to difficulties in the analysis of such type of engineering works. This paper proposes two simplified methods to quantify the stability of composite foundation treated with a large number of compaction piles. The first method is based on the principle of making the area replacement ratios of the simplified model as the same time as the practical engineering situation. Then, discrete piles arranged in a triangular shape can be simplified in the model where the annular piles and compacted soil are arranged alternately. The second method implements equivalent continuous treatment in the pile-soil area and makes the whole treated region equivalent to a type of composite material. Both methods have been verified using treated foundation of an oil storage tank. The results have shown that the differences in the settlement values obtained from the water filled test in the field and those calculated by the two simplified methods are negligible. Using stability analysis, the difference ratios of the static and dynamic safety factors of the composite foundation treated with compaction piles calculated by these two simplified methods are found to be 3.56% and 5.32%, respectively. At the same time, both static and dynamic safety factors are larger than the general safety factor, which should be greater than or equal to 2.0 according to the provisions in civil engineering. This indicates that after being treated with compaction piles, the bearing capacity of the composite foundation is effectively improved and the foundation has enough safety reserve.

Effect of Path Loss Models for CDMA Base Station Deployment in LOS Environments (LOS 환경에서 CDMA 기지국 배치를 위한 Path Loss Model의 영향)

  • Min, Seung-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.1A
    • /
    • pp.1-7
    • /
    • 2011
  • Cell Capacity and cell layout are strongly dependent on the up-link interference caused by out-of-cell mobiles. Accurate prediction of the propagation path loss from out-of-cell mobiles is essential to achieve system designs that minimize the infrastructure required for a given quality of service (QOS). Less accurate predictions can be expected to yield designs requiring the use of a greater number of base stations. In order to quantify the dependence of infrastructure on prediction accuracy, this paper considers the cellular systems, LOS (line of sight) cells along a road or highway.

Effects of Fuel-Injection Pressure on the Spray Breakup Characteristics in Small LRE Injector (소형 액체로켓엔진 인젝터의 분무 분열특성에 대한 연료분사압력의 영향)

  • Jung, Hun;Kim, Sung-Cho;Park, Jeong;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.50-57
    • /
    • 2007
  • Spray characteristics of an injector in a small liquid rocket engine (LRE) is characterized by Particle Image Velocimetry (PIV) and Dual-mode Phase Doppler Anemometry (DPDA). Instantaneous plane images captured by PIV are examined for the qualitative prediction of spray breakup with the setup of evaluation technique for effect of spray angles on injector performance. DPDA is also applied in order to quantify the average velocity, turbulent intensity, SMD, and number density of spray droplets along the spray stream distance leading to precise observation of spray atomization behavior. An objective of the study is the derivation of design parameters of new injectors and the establishment of performance criteria through the clear understanding of spray characteristics.

A Study on the Artillery shell's EFD based on Charge (장약에 기반한 포병탄 EFD 산출 모형에 관한 연구)

  • Kim, Hyunsik;Ma, Jungmok
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.1
    • /
    • pp.11-21
    • /
    • 2019
  • Modeling and simulation(M&S) method are used to quantify the weapon effectiveness. The weapon effectiveness of artillery shells was also partially studied, but there was a lack of research on the effects of the choice of charge. Therefore, this paper presents an artillery shell's EFD(Expected Fractional Damage) calculation model based on the charge and identifies differences in the weapon effectiveness of 3D building targets according to the selection of the charge. First, the input data of the calculation model was collected and a required number of shoots was calculated to achieve the desired effects using the proposed model. Finally, a paired sample t-test was conducted to verify the proposed model.

Fair Bit Allocation in Spatially Correlated Sensor Fields Using Shapley Value (공간 상관성을 갖는 센서장에서 섀플리 값을 이용한 공정한 비트 할당)

  • Sang-Seon Byun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.4
    • /
    • pp.195-201
    • /
    • 2023
  • The degree of contribution each sensor makes towards the total information gathered by all sensors is not uniform in spatially correlated sensor fields. Considering bit allocation problem in such a spatially correlated sensor field, the number of bits to be allocated to each sensor should be proportional to the degree of contribution the sensor makes. In this paper, we deploy Shapley value, a representative solution concept in cooperative game theory, and utilize it in order to quantify the degree of contribution each sensor makes. Shapley value is a system that determines the contribution of an individual player when two or more players work in collaboration with each other. To this end, we cast the bit allocation problem into a cooperative game called bit allocation game where sensors are regarded as the players, and a payoff function is given in the criteria of mutual information. We show that the Shapley value fairly quantifies an individual sensor's contribution to the total payoff achieved by all sensors following its desirable properties. By numerical experiments, we confirm that sensor that needs more bits to cover its area has larger Shapley value in spatially correlated sensor fields.