• Title/Summary/Keyword: null space

검색결과 161건 처리시간 0.027초

The Influence of the Interplanetary Magnetic Field (IMF)-Dependent Ionospheric Convection on the Thermospheric Dynamics

  • Kwak, Y.S.;Ahn, B.H.;Richmond, A.D.
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2003년도 한국우주과학회보 제12권2호
    • /
    • pp.34-34
    • /
    • 2003
  • To better understand how high-latitude electric fields influence thermospheric dynamics, we study winds in the high-latitude lower thermosphere using the Thermosphere-Ionosphere-Electrodynamics General Circulation Model of the National Center for Atmospheric Research (NCAR/TIEGCM). In order to compare with Wind Imaging Interferometer (WINDII) observations the model is run for the conditions of 1992-1993 southern summer. The association of the model results with the interplanetary magnetic field (IMF) is also examined to determine the influences of the IMF-dependent ionospheric convection on the winds. The wind patterns show good agreement with the WINDII observations, although the model wind speeds are generally weaker than the observations. It is confirmed that the influences of high-latitude ionospheric convection on summertime thermospheric winds are seen down to 105 km. For negative and positive IMF By the difference winds, with respect to the wind during null IMF conditions, show significantly strong anticyclonic and cyclonic vortices, respectively, down to 105 km. For positive IMF Bz the difference winds are largely confined to the polar cap, while for negative IMF Bz they extend to subauroral latitudes. The IMF Bz-dependent diurnal wind component is strongly correlated with the corresponding component of ionospheric convection velocity down to 108 km and is largely rotational. The influence of IMF By on the lower thermospheric summertime zonal-mean zonal wind is substantial at high latitudes, with maximum wind speeds being 60 m/s at 130 km around 77 magnetic latitude.

  • PDF

Dynamic analysis of deployable structures using independent displacement modes based on Moore-Penrose generalized inverse matrix

  • Xiang, Ping;Wu, Minger;Zhou, Rui Q.
    • Structural Engineering and Mechanics
    • /
    • 제54권6호
    • /
    • pp.1153-1174
    • /
    • 2015
  • Deployable structures have gained more and more applications in space and civil structures, while it takes a large amount of computational resources to analyze this kind of multibody systems using common analysis methods. This paper presents a new approach for dynamic analysis of multibody systems consisting of both rigid bars and arbitrarily shaped rigid bodies. The bars and rigid bodies are connected through their nodes by ideal pin joints, which are usually fundamental components of deployable structures. Utilizing the Moore-Penrose generalized inverse matrix, equations of motion and constraint equations of the bars and rigid bodies are formulated with nodal Cartesian coordinates as unknowns. Based on the constraint equations, the nodal displacements are expressed as linear combination of the independent modes of the rigid body displacements, i.e., the null space orthogonal basis of the constraint matrix. The proposed method has less unknowns and a simple formulation compared with common multibody dynamic methods. An analysis program for the proposed method is developed, and its validity and efficiency are investigated by analyses of several representative numerical examples, where good accuracy and efficiency are demonstrated through comparison with commercial software package ADAMS.

HIGHER ORDER ITERATIONS FOR MOORE-PENROSE INVERSES

  • Srivastava, Shwetabh;Gupta, D.K.
    • Journal of applied mathematics & informatics
    • /
    • 제32권1_2호
    • /
    • pp.171-184
    • /
    • 2014
  • A higher order iterative method to compute the Moore-Penrose inverses of arbitrary matrices using only the Penrose equation (ii) is developed by extending the iterative method described in [1]. Convergence properties as well as the error estimates of the method are studied. The efficacy of the method is demonstrated by working out four numerical examples, two involving a full rank matrix and an ill-conditioned Hilbert matrix, whereas, the other two involving randomly generated full rank and rank deficient matrices. The performance measures are the number of iterations and CPU time in seconds used by the method. It is observed that the number of iterations always decreases as expected and the CPU time first decreases gradually and then increases with the increase of the order of the method for all examples considered.

Study on redundancy resolution algorithm of humanoid

  • Yoo, Dong-Su;So, Byung-Rok;Choi, Jae-Yeon;Yi, Byung-Ju;Kim, Whee-Kuk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2759-2764
    • /
    • 2003
  • Humans usually employ more joints than they actually need, and thus they can be categorized as a kinematically redundant system. Therefore, the behavior of the human body can be analyzed by several redundancy resolution algorithms. Different from typical industrial robots that are fixed to the ground, the COG/ZMP condition should be taken into account in the human body motion in order not to fall down. Thus a COG/ZMP stability index is employed as a measure of stability. Kinematic redundancy inherent in the human body can be exploited to satisfy the COG/ZMP condition. Simulation result shows that the COG/ZMP condition can be satisfied by exploiting the null space motion of the kinematically redundant human body model.

  • PDF

Analysis of Internal Loading for Triple Manipulator Robotics

  • Chung, Jae-Heon;Yi, Byung-Ju;Kim, Whee-Kuk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1603-1608
    • /
    • 2003
  • Multiple robotics systems with several sub-chains have a characteristic that grasp a common object with internal loading not to loose the grip. The investigation for the internal loading of a triple manipulator has been few as compared to a dual manipulator. In this paper, type of the internal loading for a triple manipulator system is investigated through analysis of the null space of the system. Several types of the internal loading are shown for general planar and spatial type triple robots, which rigidly grasp the common object. The general scheme is applied to analysis of the internal loading for the three-fingered and three-legged robots having a point contact with the grasped object.

  • PDF

행렬 Decomposition 방법에 기초한 다중협동 로봇의 동적 조작도 해석 (Analysis of dynamic manipulability for multiple cooperating robot system based on matrix decomposition)

  • 이지홍;조복기
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 V
    • /
    • pp.2705-2708
    • /
    • 2003
  • In this paper, we propose a method that applies matrix decomposition technique to the connection of actuator capabilities of each robot to object acceleration limits for multiple cooperative robot systems. The robot systems under consideration are composed of several robot manipulators and each robot contacts a single object to carry the object while satisfying the constraints described in kinematics as well as dynamics. By manipulating kinematic and dynamic equations of both robots and objects, we at first derive a matrix relating joint torques with object acceleration, manipulate the null space of the matrix, and then we decompose the matrix into three parts representing indeterminancy, connectivity, and redundancy. With the decomposed matrix we derive the boundaries of object accelerations from given joint actuators. To show the validity of the proposed method some examples are given in which the results can be expected by intuitive observation.

  • PDF

A Distributed Implementation Algorithm for Physical Layer Security Based on Untrusted Relay Cooperation and Artificial Noise

  • Li, Xiangyu;Wang, Xueming;Xu, Xiangyang;Jin, Liang
    • ETRI Journal
    • /
    • 제36권1호
    • /
    • pp.183-186
    • /
    • 2014
  • In this letter, we consider a cooperation system with multiple untrusted relays (URs). To keep the transmitted information confidential, we obtain joint channel characteristics (JCCs) through combining the channels from the source to the destination. Then, in the null space of the JCCs, jammers construct artificial noise to confuse URs when the source node broadcasts its data. Through a distributed implementation algorithm, the weight of each node can be obtained from its own channel state information. Simulation results show that high-level security of the system can be achieved when internal and external eavesdroppers coexist.

열차 동역학에서 기구학적 비연성을 이용한 분할 해석 방법 (Partitioning method using kinematic uncoupling in train dynamics)

  • 박정훈;유홍희;황요하;김창호
    • 한국철도학회논문집
    • /
    • 제2권1호
    • /
    • pp.47-55
    • /
    • 1999
  • In this paper, an efficient and accurate formulation for the transient analysis of constrained multibody systems is presented. The formulation employs Kane's method along with the null space method. Kane's method reduces the dimension of equations of motion by using partial velocity matrix: it can improve the efficiency of the formulation. Furthermore, the formulation partitions the coefficient matrix of linear and nonlinear equations into several sub-matrices using kinematic uncoupling. This can solve the equations more efficiently. The proposed formulation can be used to perform dynamic analysis of systems which can be partitioned into several sub-systems such as train systems. One numerical example is given to demonstrate the efficiency and accuracy of the formulation, and another numerical example is given to show its application to the train systems.

  • PDF

Computational Method for Dynamic Analysis of Constrained Mechanical Systems Using Partial Velocity Matrix Transformation

  • Park, Jung-Hun;Yoo, Hong-Hee;Hwang, Yo-Ha
    • Journal of Mechanical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.159-167
    • /
    • 2000
  • A computational method for the dynamic analysis of a constrained mechanical system is presented in this paper. The partial velocity matrix, which is the null space of the Jacobian of the constraint equations, is used as the key ingredient for the derivation of reduced equations of motion. The acceleration constraint equations are solved simultaneously with the equations of motion. Thus, the total number of equations to be integrated is equivalent to that of the pseudo generalized coordinates, which denote all the variables employed to describe the configuration of the system of concern. Two well-known conventional methods are briefly introduced and compared with the present method. Three numerical examples are solved to demonstrate the solution accuracy, the computational efficiency, and the numerical stability of the present method.

  • PDF

Compliant motion controllers for kinematically redundant manipulators

  • Park, Jonghoon;Chung, Wan-Kyun;Youm, Youngil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.456-459
    • /
    • 1995
  • The problem of compliant motion control using a redundant manipulator is addressed in this article. Specifically, a hybrid-control type and impedance-control type controllers are extended to general redundant manipulators based on the kinematically decomposed and geometrically compatible modeling of its joint space. In the case of the hybrid controller, it leads to the linear and decoupled closed-loop dynamics in the three motion spaces, that is the motion-controlled, force-controlled, and the null motion-controlled spaces of the redundant manipulator. When the proposed impedance controller is applied, the decoupled impedance models in three motion spaces are obtained. The superiority of the proposed controllers is verified with the numerical experiments.

  • PDF