• Title/Summary/Keyword: nucleolus

Search Result 127, Processing Time 0.022 seconds

Study of an ER bound p80 Homologous to Nucleolar B23 (핵소체 단백 B23과 세포질 단백 p80의 유사성에 관한 연구)

  • Lee, Hye-Jeong;Yoon, Sang-In;Choi, Yong-Chun;Ahn, Young-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.2
    • /
    • pp.241-250
    • /
    • 1995
  • Protein B23 is one of the major nucleolar phosphoproteins associated with pre-ribosomal particles, and is localized in the granular region of the nucleolus. Recent studies suggest that protein B23 shuttles between nucleus and cytoplasm and also interacts with HIV Rev. These findings indicate that protein B23 is important in nucleocytoplasmic relationship and viral replication. However, the exact function of protein B23 is not clear yet. In acute nucleolar hypertrophy of rat liver, treated with thioacetamide, there was observed an increase of not only protein B23 but also B23-like protein p45 when anti-B23 monoclonal antibody (MAb) was used for identification. On the basis of the large B23 specific epitope structure composed of 68 amino acids, a hypothesis was formulated to examine that p45 is the pre-B23 resulting from excessive production of B23. In an attempt to investigate the precursor of B23, we analyzed the subcellular fractions and microsomal subfractions. Subsequently, we analyzed the finger printings of B23-like proteins using the tryptic peptide mapping. The results are summarized: 1) Using B23 MAb, we observed the presence of B23-like proteins in nucleolar fraction, nucleoplasmic fraction and microsomal fraction. 2) In the further microsomal subfractionation, we could partially purify B23-like protein in 2M layer of sucrose gradient. 3) When ion exchange chromatography was employed, there were protein species 80kDa(p80), 65kDa(p65) and 60kDa(p60). 4) Based on the tryptic map analysis of $^{125}I$ labeled proteins, the similarity between B23 and p80 was found only in 9 out of 14(B23) and 21(p80) peptides, and difference was found in the remaining peptides. p80 and p60 had 18 common peptides, and all the peptides of p60 were similar to those of p80. From these results, it is proposed that p45 is an abnormal metabolite resulting from carcinogenesis by thioacetamide, and it is not the precursor of B23. In addition, we suggest that p80 may be a precursor of p45.

  • PDF

Karyotype Analysis and Physical Mapping of rDNAs Using Bicolor-FISH in Tiarella polyphylla D. Don (헐떡이풀의 핵형분석과 Bicolor FISH를 이용한 물리적 지도 작성)

  • Kim, Soo-Young;Lee, Joong-Ku
    • Korean Journal of Plant Resources
    • /
    • v.20 no.5
    • /
    • pp.446-450
    • /
    • 2007
  • Tiarella polyphylla D. Don(Saxifragaceae) is a perennial herb and distributed in China, Japan, Taiwan and Korea. Especially, it only grows in Ulleung island of Korea. It has been using for asthma, bruise and audition troubles with main components of some Triterpenoids and seven oleanolic Saponins. There is only known its chromosomal number rarely and cytogenetic study was not done. From this study, karyotype analysis and chromosomal localization of 5S and 45S rDNAs using bicolor-FISH(fluorescence in situ hybridization) were carried out. The somatic metaphase chromosome number was 2n=2x=14 and the size of chromosomes ranged $1.66{\sim}3.50{\mu}m$. The chromosome complement consisted of four pairs of submetacentrics(chromosomes 1, 2, 3 and 6), two pairs of subtelocentrics(chromosomes 5 and 7) and one pair of telocentrics(chromosome 4). We also observed NOR(nucleolus organizer region) on the chromosome 4. In bicolor-FISH, one pair of 55 and 45S rDNA sites was detected on the centromeric region of chromosome 3 and short arm of chromosome 4, respectively. Bicolor FISH was very useful tool for the localization and identification of rDNAs on the chromosomes in Tiarella polyphylla.

GAMETOGENESIS AND REPRODUCTIVE CYCLE OF THE TOPSHELL, TURBO CORNUTUS SOLANDER (소라, Turbo cornutus의 생식세포형성과정 및 생식주기에 관한 조직학적 연구)

  • LEE Ju Ha
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.13 no.4
    • /
    • pp.125-134
    • /
    • 1980
  • The dovelopment of the gonads, gametogenesis and the reproductive cycle of the topshell, Turbo cornutus Solander, which is one of valuable food animals fom Korean waters were studied by photomicroscophy. The materials were monthly collected from Bangeojin, Jeongjari and Dangweol, all these places being located in the south-eastern part of Korea, for one year from March 1979 to February 1980. Topshell is dioecious and oviparous. Gonad is situated on the surface of liver, which lies posteriorly. The surface of ovary and testis is covered with a fibrous membrane, membrane of connective and muscular fibers and then an outermost layer of simple-columnar epithelial cells which are composed of cuboidal and columnar mucous gland cells. Primordial germ cells develop on the germinal epithelium of ovarian and testicular lobuli which are originated from the fibrous membrane and extend toward hepatic gland. Undifferentiated mesenchymal tissue and pigment granular cells are abundantly distributed between the growing oocytes and spermatocytes in the early development stages. With the further development of the ovary and testis these tissue and cells gradually disappear. Then the undifferentiated mesenchymal tissue and pigment granular cells are considered to be related to the growing of the oocytes and spermatocytes. Early multiplicating oogonium is ca. $10\mu$ in diameter and nucleushaving a central nucleolus is ra. $8\mu$. As the oocytea grow to ca. $50-60\mu$ by the increase of cytoplasm, the oocytes become look like bunches of grapes which are attached to ovarian lobuli. Mature eggs are ca. $180-210\mu$ in diameter and it is surrounded by a gelatinous membrane of ca. $10\mu$ in thickness. After spawning, undischarged ripe eggs and spermatozoa remain in the ovary and testis respectively for some time. Then they finally degenerate, and proliferation of new oogonia and spermatogonia occur along the germinal epithelia of newly developed ovarian and testicular lobuli. Reprocuctive cycle of Turbo cornutus could be classified into five successive stages: multiplicative, growing, maturer spent and recovery stages. Spawning occurs from August to November with Peak spawning from early September to late October.

  • PDF

Early Gonadogenesis and Sex Differentiation in the Viviparous Teleost, Ditrema temmincki (태생 경골어류, 망상어(Ditrema temmincki)의 초기생식소 형성 및 성분화)

  • LEE Jung Sick;LEE Young Don
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.1
    • /
    • pp.35-43
    • /
    • 1996
  • The appearance of the primordial germ cells (PGC's), early gonadogenesis, sex differentiation and sex ratio of the embryo in the viviparous teleost, Ditrema temmincki were investigated by using photomicroscopy. The PGC's were first observed in the fibrous mesenchymal tissue located between the early alimentary tract and the dorsal body wall in the late embryonic development stage. During the period from the hatching to the individual total length (TL) of 4.0 mm the PGC's were evenly distributed in the fibrous mesenchymal tissue between alimentary tract and body wall. But the period of TL 5.0 mm mesenchymal tissue separated from the dorsal body wall, the PGC's moved to the posterior mesenchymal tissue and formed the primitive gonad. During the early gonadogenesis, differentiation of the testis and ovary were distinguished from the arrangement of the germ cells and somatic cells. Gonad of embryo in TL 10.0 mm can be separated into the ovary and testis by external morphology. The testis had a separated form which was consisted with two lobes, and the ovary had a fused form in half-posterior part. In the testicular differentiation of the embryo, histological pattern of the seminiferous tubule appeared when TL of the embryo was to be 25.0 mm, for the seminal vesicle was formed In the individual TL of 30.0mm. The testis of the embryo with TL of 45.0 mm was similar to that of the adult fish in the external and internal structures. In the ovarian differentiation, formation of the ovigerous folds and the ovarian cavity were clearly observed when the TL reached to 30.0 mm. The ovary from the individual with TL of 60.0 mm was differentiated into a similar ovary as seen in the adult fish in the external and internal structure. Right before parturition the total length of the individual was approximately 63.0 mm of which the individual embryo has an ovary containing the oocytes in the chromatin nucleolus stage, or a testis containing the spermatogonia, respectively. And the embryonic sex ratio of female to male was 1.65 : 1. Ditrema temmincki is dioecism and the pattern of sex differentiation is belonged to a differentiation type.

  • PDF

Annual Reprodutive Cycle of the Jackknife Clams, Solen strictus and Solen gordonis (맛조개, Solen strictus와 붉은맛, Solen gordonis의 생식년주기)

  • CHUNG Ee-Yung;KIM Hyung-Bae;LEE Taek-Yuil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.6
    • /
    • pp.563-574
    • /
    • 1986
  • The structure of gonads, gametogenesis and reproductive cycle of the jackknife clams, Solen strictus and Solen gordonis were investigated mainly by histological observation. The first species used were monthly sampled at the coastal area of Dadaepo, Pusan, Korea and Naechodo, Kunsan, Korea for one year from February 1982 to January 1983. The second species were monthly sampled at the sand beach of Dadaepo, Pusan, Korea, from February 1982 to January 1983. Sexualities of Solen strictus and Solen gordonis are dioecious, and these species are oviparous. The gonads are irregularly arranged from the subregion of mid-intestinal gland in visceral cavity to reticular connective tissue of foot. The ovary was composed of a number of small ovarian sacs and the testis was composed of several testicular lobuli which from the tubular structure. Early multiplicating oogonium was about $10{\mu}m$ in diamater. Nucleus and nucleolus, at that time, were distinct in appearance. Each of the early growing oocytes made an egg-stalk, connected to the germinal epithelium of the ovarian sac. A great number of undifferentiated mesenchymal tissue and eosinophilic granular cells are abundantly distributed in the ovarian sacs in the early development stages. With the further development of gonad, these tissue and cells gradually disappeared. Then the undifferentiated mesenchymal tissue and eosinophilic granular cells function as nutritive cells in the formation and development of the early stage germ cells. Mature oocytes were free in the lumen of ovarian sacs and gradually become round or oval. Ripe oocyte was about 80 to $90{\mu}m$ in diameter. With the further development of testis, each of the testicular lobuli formed stratified layers composed of spermatogonia, spermatocytes, spermatids and spermatozoa in groups on the germinal epithelium. After spawning, the gonad gradually degenerated, and disorganized completely. Then new differentiated tissues were rearranged next year. The annual reproductive cycle of those species could be classified into five stages; multiplicative, growing, mature, spent, degenerative and resting stage. It seems that the spawning season is closely related to the water temperature, and the spawning of Solen strictus occurs from June to July at above $20^{\circ}C$ in water temperature. The peak spawning season appeared in June at Dadaepo and in July at Kunsan, The spawning of Solen gordonis occurs from May to June with the peak spawning season in June. Percentages of the first maturity in female of Solen strictus ranging from 5.1-6.0 cm and 7.1-8.0 cm in shell length were $50\%$ and $100\%$, respectively.

  • PDF

Annual Reproductive Cycle and Changes in Plasma Levels of Sex Steroid Hormones of the Female Korean Dark Sleeper, Odontobutis platycephala (Iwata et Jeon) (동사리, Odontobutis platycephala (Iwata et Jeon) 암컷의 생식주기와 혈중 성스테로이드 호르몬의 변화)

  • LEE Won-Kyo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.4
    • /
    • pp.599-607
    • /
    • 1998
  • To clarify annual reproductive cycle of Korean dark sleeper, Odontobutis platycephala (Iwata et Jeon), we examined the seasonal changes of gonadosomatic index (GSI), the proportional frequency of oocyte development stages in the ovary and the changes of sex steroid hormone levels in blood from December 1995 to November 1997. In July and August, GSI was 0.35 to 0.72 and most oocytes in the ovary were chromatin-nucleolus stage and perinucleolar stage (proportional frequency: $87\%\~96\%$). In September, GSI was 1.20 $\pm$ 0.12, some oocytes in the ovary were yolk vesifle stage (proportional frequency: $22.8\%$) and vitellogenic stage which appeared very rarely(proportional frequency: $2.2\%$). GSI increased gradually from October and reached 4.59± 0.61 to December. During this period, oocytes of vitellogenic stage increased slightly (proportional frequency in December: $22.1\%$). In January, GSI was 4.32 $\pm$ 0.72 but the proportional frequency of oocytes in vitellogenic stage increased (proportional frequency: $51.2\%$). from February, GSI was increased sharply and reached to 10.51 $\pm$ 1.04 in March, the highest value throughout the year and the proportional frequency of oocytes in vitellogenic stage also reached the highest levels (proportional frequency: $60\%$). From April, GSI was gradually decreased and fell down to 1.11 $\pm$ 0.35 in June. During this period, the proportional frequency of mature oocytes was the highest in April (proportional frequency of mature oocyte stage: $40\%$ in April, $12\%$ May, $5\%$ June) throughout the year, and atretic ovarian follicles were appeared. The blood level of estradiol-17$\beta$ ($E_2$), which stimulates the hepatic synthesis and secretion of vitellogenin, was $0.84{\pm}0.20\;ng/m{\ell}$ in August, and thereafter was not changed until December. from January, it increased sharply and reached the highest level of $ 2.85{\pm}0.35\;ng/m{\ell}$ in March throughout the year, but fell to $0.14{\pm}0.02\;ng/m{\ell}$ in July(P<0.05), 17$\alpha$-hydroxprogesterone(17$\alpha$-OHP) was the peak $13.37{\pm}0.52ng/m{\ell}$ in March, but no significant changes in other period(below $3ng/m{\ell}$, P<0.05). 17$\alpha$, 20$\beta$-dihydroxy-4-pregnen-3-one(17$\alpha$, 20$\beta$-P), which was known as the final maturation inducing hormone in teleost, was $0.74{\pm}0.09ng/m{\ell}$ in April and $0.54{\pm}0.07ng/m{\ell}$ in May, but no significant changes in other period (below $0.26\;ng/m{\ell}$, p<0.05). Taken together these results, the annual reproductive cycle of O. platycephala divided into 4 periods as follows: 1) ripe and spawning period from April to June, main spawning period was from April to May, 2) Resting period from July to August, 3) Growing period from September to December, 4) Maturing period from January to March. Moreover, It was showed that the changes of sex steroid hormone in blood played a important roles in the annual reproductive cycle of O. platycephala.

  • PDF

Multiplication of Infectious Flacherie and Densonucleosis Viruses in the Silkworm, Bombyx mori (가잠의 전염성 연화병 및 농핵병 바이러스 증식에 관한 연구)

  • 김근영;강석권
    • Journal of Sericultural and Entomological Science
    • /
    • v.25 no.2
    • /
    • pp.1-31
    • /
    • 1984
  • Flacherie, as one of the most prevalent silkworm diseases, causes severe economic damage to sericultural industry and its pathogens have been proved to be flacherie virus (FV) and densonucleosis virus (DNV). Multiplications of the viruses in the larvae of the silkworm, Bombyx mori, were studied by the sucrose density gradient centrifugation and electron microscopy. The quantitative and qualitative changes of nucleic acids and proteins were investigated from the midgut and hemolymph in the silkworm larvae infected separately with FV and DNV. The histopathological changes of epithelial cells of infected midgut also were examined by an electron microscope. 1. Purified fractions of FV or DNV in a sucrose density gradient centrifugation yielded one homogenous and sharp peak without a shoulder, suggesting no heterogenous materials in the preparation. Electron microscopy also revealed that FV and DNV were spherical particles, 27nm and 21nm in diameter, respectively. 2. Silkworm larvae showed a decrease in body weight on the 6th day and in midgut weight on the 3rd day after inoculation with FV or DNV. 3. DNA content was higher in the midgut when infected with FV or DNV, but the hemolymph of the infected larvae showed no difference during first 6 days after inoculation, after which DNA concentration declined rapidly. 4. RNA synthesis of silkworm larvae infected separately with FV and DNV was stimulated in the midgut, but RNA content was reduced in the hemolymph at the early stage of virus multiplication. At the late stage of virus multiplication, however, it was extremely reduced in both midgut and hemolymph. 5. The concentration of protein in the midgut and hemolymph of silkworm larvae infected separately with FV and DNV showed no difference from that of the healthy larvae at the early stage of virus multiplication, but it was significantly reduced at the late stage of virus multiplication. 6. There was no difference in the electrophoretic patterns of RNAs extracted from the midgut of healthy or virus-infected larvae. 7. The electrophoresis of proteins extracted from the midgut infected with FV or DNV, when carried out on the 1st and 5th day after virus inoculation, showed no difference from that of the healthy larvae. But, there was an additional band with medium motility in the proteins on the 8th day after virus inoculation, while a band with low mobility shown in the proteins of healthy larvae disappeared in the infected larvae. However, a band with high mobility in the healthy larvae was separated into two fractions in the infected larvae. 8. The electrophoretic pattern of hemolymph proteins of the silkworm larvae infected separately with FV and DNV was similar to that of the healthy larvae, but the concentration of hemolymph proteins in the infected larvae was lower than that of the healthy larvae at the late stage. 9. Two types of inclusion bodies were shown by the double staining of pyronin-methyl green in the columnar cell of the midgut on the 8th day after FV inoculation. 10. Electron microscopy of the infected midgut revealed that the 'cytoplasmic wall' of the goblet cell thickened on the 5th day after FV inoculation and several types of the cytopathogenic structures, such as virus$.$specific vesicles, virus particles, linear structures, tubular structures, and high electron-dense matrices were observed in the cytoplasm of the goblet cell. The virus particles were also observed in the microvilli and the structures similar to spherical virus particles were observed around the virus-specific vesicles, suggesting the virus assembly in the cytoplasm. 11. Fluorescence micrograph of the infected midgut stained with acridine orange showed that the nucleus, the site of DNV multiplication in the columnar cell, enlarged on the 5th day after virus inoculation. 12. Electron microscopic examination of DNV infected midgut revealed that the nucleolus of the columnar cell was broken into granules and those granules dispersed into apical region of the nucleus on the 5th day after virus inoculation. On the 8th day after inoculation, it was also observed that the nucleus of the columnar cell was full with the high electron-dense virogenic stroma which were similar to virus particles. These facts suggest that the virogenic stroma were the sites of virus assembly in the process of DNV multiplication.

  • PDF