• Title/Summary/Keyword: nucleic acid concentration

Search Result 57, Processing Time 0.023 seconds

The relationship between odd- and branched-chain fatty acids and microbial nucleic acid bases in rumen

  • Liu, Keyuan;Hao, Xiaoyan;Li, Yang;Luo, Guobin;Zhang, Yonggen;Xin, Hangshu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.11
    • /
    • pp.1590-1597
    • /
    • 2017
  • Objective: This study aims to identify the relationship between odd- and branched-chain fatty acids (OBCFAs) and microbial nucleic acid bases in the rumen, and to establish a model to accurately predict microbial protein flow by using OBCFA. Methods: To develop the regression equations, data on the rumen contents of individual cows were obtained from 2 feeding experiments. In the first experiment, 3 rumen-fistulated dry dairy cows arranged in a $3{\times}3$ Latin square were fed diets of differing forage to concentration ratios (F:C). The second experiment consisted of 9 lactating Holstein dairy cows of similar body weights at the same stage of pregnancy. For each lactation stage, 3 cows with similar milk production were selected. The rumen contents were sampled at 4 time points of every two hours after morning feeding 6 h, and then to analyse the concentrations of OBCFA and microbial nucleic acid bases in the rumen samples. Results: The ruminal bacteria nucleic acid bases were significantly influenced by feeding diets of differing forge to concentration ratios and lactation stages of dairy cows (p<0.05). The concentrations of OBCFAs, especially odd-chain fatty acids and C15:0 isomers, strongly correlated with the microbial nucleic acid bases in the rumen (p<0.05). The equations of ruminal microbial nucleic acid bases established by ruminal OBCFAs contents showed a good predictive capacity, as indicated by reasonably low standard errors and high R-squared values. Conclusion: This finding suggests that the rumen OBCFA composition could be used as an internal marker of rumen microbial matter.

Biosynthesis of Nucleic Acid in Chloroplast Isolated from Chlorella Cells. I. (Chlorella제포에서 분리한 엽록체의 핵산합성 1)

  • 이종삼;석영애
    • Korean Journal of Microbiology
    • /
    • v.21 no.4
    • /
    • pp.197-206
    • /
    • 1983
  • For the purpose of investigating the effect of nalidixic acid on the nucleic acid synthesis in chloroplast isolated from Chlorella ellipsoidea, cells were cultured in the media treated with nalidixic acid(20ppm) for 5 days. Aliquots cells were taken out at the inoculation and at intervals during the culture and growth rate of Chlorella cells measured. After extraction of nucleic acids in chloroplast isolated from these cells, their contents were analyzed by the base composition and the effect of nalidixic acid on the nucleic acid synthesis interpreted to compare with those of the control. 1. It was showed that the inhibitory concentration affected by nalidixic acid on the growth of Chlorella cells were 20ppm. 2. Because nalidixic acid had depressed the DNA replication in isolated chloroplast as well as whole cell system, these contents were markedly decreased in comparison with those of the control. 3. In the isolated chloroplast as well as in the whole cell system, nalidixic acid was decreased contents of base in the RNA by preventing RNA transcription.

  • PDF

he Study of Nucleic Acid Extraction Method from Archival Paraffin Blocks (보존된 파라핀 블록에서 핵산 추출기법에 관한 연구)

  • Joo, Kyung-Woong
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.40 no.2
    • /
    • pp.113-117
    • /
    • 2008
  • It designed a study to examine the efficiency of DNA and RNA extraction from archival formalin-fixed, paraffin-embedded tissues using an non-heating and heating method. Archival paraffin blocks of liver, kidney, colon were randomly selected. Each paraffin block was prepared in 20 microtubes. For each paraffin blocks were tested non-heating DNA extraction to 10 microtubes and heating protocol under pH 7.0 and $100^{\circ}C$ to 10 microtubes. Evaluation of the results of DNA extraction was carried out by measuring concentration by UV spectrophotometry and then PCR amplification. DNA extraction content that non-heating method was liver $5{\pm}0.7{\mu}g/mL$, kidney $2{\pm}0.3{\mu}g/mL$, colon $6{\pm}0.4{\mu}g/mL$ and heating method was liver $12{\pm}0.6{\mu}g/mL$, kidney $7{\pm}0.5{\mu}g/mL$, colon $10.{\pm}0.3{\mu}g/mL$. Successful RNA extraction was observed, by ${\beta}$-actin amplification, in 46.7% sections for samples treated by the heating method versus 30.0% using non-heating DNA extraction. The extracted nucleic acid showed better values for samples heated at $100^{\circ}C$. Therefore heating extraction of nucleic acid is reliable, quick and efficiency.

  • PDF

Effect of Rifampicin on the Biosynthesis of Nucleic Acid in Chloroplast isolated from Chlorella ellipsoidea (Chlorella 세포에서 분리한 엽록체의 핵산합성에 미치는 rifampicin의 영향)

  • 이종삼;정희숙
    • Korean Journal of Microbiology
    • /
    • v.24 no.3
    • /
    • pp.276-287
    • /
    • 1986
  • Chlorella ellipsoidea were cultured in the media containing rifampicin for 7 days. Aliquot cells were taken out after the inoculation and at intervals during cultivation and growth rate of Chlorella cells was measured. In order to investigate the effect of rifampicin on the nucleic acid synthesis, nucleic acid and RNA polymerase were extracted from chloroplast isolated from these cells, and the contents of nucleic acid and activity of enzyme were measured to compared with those of the control. The inhibitory concentration of rifampicin on growth was 80 ppm. The DNA contents in chloroplasts isolated were decreased 60% to compared with control, whole cells were markedly decreased 70% by rifampicin. The contents of base in the RNA were decreased 46% by rifampicin in shole cell, and 77% of base contents were decreased in chloroplast. Rifampicin also inhibited the activity of RNA polymerase, therefore whole cell was decreased 10% of activity and chloroplasts were decreased 42% of activity.

  • PDF

Optimization of ultra-fast convection polymerase chain reaction conditions for pathogen detection with nucleic acid lateral flow immunoassay

  • Kim, Tae-Hoon;Hwang, Hyun Jin;Kim, Jeong Hee
    • International Journal of Oral Biology
    • /
    • v.44 no.1
    • /
    • pp.8-13
    • /
    • 2019
  • Recently, the importance of on-site detection of pathogens has drawn attention in the field of molecular diagnostics. Unlike in a laboratory environment, on-site detection of pathogens is performed under limited resources. In this study, we tried to optimize the experimental conditions for on-site detection of pathogens using a combination of ultra-fast convection polymerase chain reaction (cPCR), which does not require regular electricity, and nucleic acid lateral flow (NALF) immunoassay. Salmonella species was used as the model pathogen. DNA was amplified within 21 minutes (equivalent to 30 cycles of polymerase chain reaction) using ultra-fast cPCR, and the amplified DNA was detected within approximately 5 minutes using NALF immunoassay with nucleic acid detection (NAD) cassettes. In order to avoid false-positive results with NAD cassettes, we reduced the primer concentration or ultra-fast cPCR run time. For singleplex ultra-fast cPCR, the primer concentration needed to be lowered to $3{\mu}M$ or the run time needed to be reduced to 14 minutes. For duplex ultra-fast cPCR, $2{\mu}M$ of each primer set needed to be used or the run time needed to be reduced to 14 minutes. Under the conditions optimized in this study, the combination of ultra-fast cPCR and NALF immunoassay can be applied to on-site detection of pathogens. The combination can be easily applied to the detection of oral pathogens.

A Study of Mode of Action of Alachlor - I. Effects of Alachlor on Nucleic acid, Amino acid and Protein Synthesis in Oat(Avena sativa L.) (Alachlor의 제초기구(除草機構)에 관한 연구(硏究) - I.Alachlor가 귀리의 핵산(核酸), 아미노산 및 단백질합성(蛋白質合成)에 미치는 영향(影響))

  • Kwon, S.W.;Kim, J.C.
    • Korean Journal of Weed Science
    • /
    • v.10 no.3
    • /
    • pp.227-232
    • /
    • 1990
  • The effects of alachlor [2-chloro-2', 6' diethyl-N-(methoxymethyl) acetanilide] treatment on nucleic acid, amino acid and protein synthesis were studied. The amide herbicide alachlor blocks the biosynthesis of the amino acids isoleucine, valine and aromatic amino acid in oat root tips. Nucleic acid was inhibited, but was not proportional to reduction in protein synthesis. $1{\times}10^{-4}M$ of alachlor treatment of oat roots inhibited 36% DNA synthesis, but DNA synthesis was not inhibited at $1{\times}10^{-5}M$. RNA synthesis was inhibited by $1{\times}10^{-5}M$ and $1{\times}10^{-4}M$ of alachlor 16 and 27%, respectively, while inhibition of protein synthesis did occur at same concentrations. Inhibition of protein synthesis also did not occur at concentration below $1{\times}10^{-4}M$ alachlor. It suggest that inhibition of protein sythesis caused significantly by alachlor($1{\times}l0^{-3}M$) result from secondary action.

  • PDF

Physiological Effects of 2,4-Dichlorophenoxyacetic acid (2,4-D) on Chlorella ellipsoidea (Chlorella의 생리에 미치는 2,4-dichlorophenoxyacetic Acid의 영향)

  • 채인기;정영숙
    • Korean Journal of Microbiology
    • /
    • v.13 no.3
    • /
    • pp.101-108
    • /
    • 1975
  • Physiological effects of 2,4-D on the growth of Chlorella ellipsoidea were investigated culturing the alage in the MN4 media containing 0. $10^{-4}/M$ and $4<\times}10^{-4}M$ 2,4-D. During 6 days culture were taken to analysis with respect to overall growth, photosynthesis, respiration and chemical composition. Results obtained from the experiment were as follows : 1) The growth of chlorella was increased at $10^{-4}M$ and decreased at $4{\times}10^{-4}M$ of 2,4-D concentrations 2) At $10^{-4}M$ pf 2,4-D cpncentration, the activity of photosynthesis enhanced relative to contro. while at $4{\times}10^{-4}M$ it was not changed. In both concentrations, however, the rate of respiration was down from the control. 3) At $10^{-4}M$ 2,4-D, the concentration of carbondrate metabolites was not changed relative to control, while significant increase in the concentrations of proteins and nucleic acids was observed. On the other hand at $4{\times}10^{-4}M$ of 2,4-D concentrations, all the metabolites including carbohydrates, proteins and nucleic acids were descreased. 4) It is concluded that 2,4-D at $10^{-4}M$ concentration accelerates the growth of chlorella by promoting the activities of photosynthesis and biosynthesis of proteins and nucleic acids.

  • PDF

Highly Sensitive Detection of Pathogenic Bacteria Using PDMS Micro Chip Containing Glass Bead (유리비드를 포함한 PDMS 마이크로칩을 이용한 고감도 감염성 병원균 측정에 관한 연구)

  • Won, Ji-Yeong;Min, Jun-Hong
    • KSBB Journal
    • /
    • v.24 no.5
    • /
    • pp.432-438
    • /
    • 2009
  • Here, we demonstrated simple nucleic acid, RNA, concentration method using polymer micro chip containing glass bead ($100\;{\mu}m$). Polymer micro chip was fabricated by PDMS ($1.5\;cm\;{\times}\;1.5\;cm$, $100\;{\mu}m$ in the height) including pillar structure ($160\;{\mu}m\;(I)\;{\times}\;80\;{\mu}m\;(w)\;{\times}\;100\;{\mu}m\;(h)$, gap size $50\;{\mu}m$) for blocking micro bead. RNA could be adsorbed on micro glass bead at low pH by hydrogen bonding whereas RNA was released at high pH by electrostatic force between silica surface and RNA. Amount of glass beads and flow rate were optimized in aspects of adsorption and desorption of RNA. Adsorption and desorption rate was measured with real time PCR. This concentrated RNA was applied to amplification micro chip in which NASBA (Nucleic Acid Sequence Based Amplification) was performed. As a result, E.coli O157 : H7 in the concentration of 10 c.f.u./10 mL was successfully detected by these serial processes (concentration and amplification) with polymer micro chips. It implies this simple concentration method using polymer micro chip can be directly applied to ultra sensitive method to measure viable bacteria and virus in clinical samples as well as environmental samples.

A Photosensitive Glass Chip for DNA Purification of Nucleic Acid Probe Assay

  • Kim, Joon-Ho;Kim, Byung-Gyun;Yoon, Jun-Bo;Euisik Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.4
    • /
    • pp.232-238
    • /
    • 2001
  • A new DNA purification chip is proposed and fabricated for the sample preparation of Nucleic Acid (NA) probe assay. The proposed DNA purification chip is fabricated using photosensitive glass substrate and polydimethylsiloxane (PDMS) cover fixture. We have successfully captured and eluted the DNA using the fabricated photosensitive glass chip. The fabricated DNA purification chip showed a binding capacity of $15ng/\textrm{cm}^2$and a minimum extractable input concentration of $100copies/200\muL$. The proposed DNA purification chip can be applied for low-cost, disposable sample preparation of NA probe assays.

  • PDF

Interaction of Resveratrol and Genistein with Nucleic Acids

  • Usha, Subbiah;Johnson, Irudayam Maria;Malathi, Raghunathan
    • BMB Reports
    • /
    • v.38 no.2
    • /
    • pp.198-205
    • /
    • 2005
  • Resveratrol (RES) and genistein (GEN) are the dietary natural products known to possess chemopreventive property and also the ability to repair DNA damage induced by mutagens/carcinogens. It is believed that the therapeutic activity of these compounds could be primarily due to their interaction with nucleic acids but detailed reports are not available. We here explore the interaction of these drugs with nucleic acids considering DNA and RNA as a potential therapeutic target. The interaction of RES and GEN has been analysed in buffered solution with DNA [saline sodium citrate (SSC)] and RNA [tris ethylene diammine tetra acetic acid (TE)] using UV-absorption and Fourier transform infrared (FTIR) spectroscopy. The UV analysis revealed lesser binding affinity with nucleic acids at lower concentration of RES (P/D = 5.00 and 10.00), while at higher drug concentration (P/D = 0.75, 1.00 and 2.50) hyperchromic effect with shift in the ${\lambda}_{max}$ is noted for DNA and RNA. A major RES-nucleic acids complexes was observed through base pairs and phosphate backbone groups with K = $35.782\;M^{-1}$ and K = $34.25\;M^{-1}$ for DNA-RES and RNA-RES complexes respectively. At various concentrations of GEN (P/D = 0.25, 0.50, 0.75, 1.00 and 2.50) hyperchromicity with shift in the ${\lambda}_{max}$ from 260 $\rightarrow$ 263 om and 260 $\rightarrow$ 270 nm is observed for DNA-GEN and RNA-GEN complexes respectively. The binding constant (from UV analysis) for GEN-nucleic acids complexes could not be obtained due to GEN absorbance overlap with that of nucleic acids at 260 nm. Nevertheless a detailed analysis with regard to the interaction of these drugs (RES/GEN) with DNA and RNA could feasibly be understood by FTIR spectroscopy. The NH band of free DNA and RNA which appeared at $3550-3100\;cm^{-1}$ and $3650-2700\;cm^{-1}$ shifted to $3450-2950\;cm^{-1}$ and $3550-3000\;cm^{-1}$ in DNA-RES and RNA-RES complexes respectively. Similarly shifts corresponding to $3650-3100\;cm^{-1}$ and $3420-3000\;cm^{-1}$ have been observed in DNA-GEN and RNA-GEN complexes respectively. The observed reduction in NH band of free nucleic acids upon complexation of these drugs is an indication of the involvement of the hydroxyl (OH) and imino (NH) group during the interaction of the drugs and nucleic acids (DNA/RNA) through H-bonded formation. The interaction of RES and GEN with bases appears in the order of G $\geq$ T > C > A and A > C $\geq$ T > G. Further interaction of these natural compounds with DNA and RNA is also supported by changes in the vibrational frequency (shift/intensity) in symmetrical and asymmetrical stretching of aromatic rings of drugs in the complex spectra. No appreciable shift is observed in the DNA and RNA marker bands, indicating that the B-DNA form and A-family conformation of RNA are not altered during their interaction with RES and GEN.