• Title/Summary/Keyword: nuclear waste disposal

Search Result 548, Processing Time 0.025 seconds

Nonlinear Structural Analysis of the Spent Nuclear Fuel Disposal Canister Subjected to an Accidental Drop and Ground Impact Event (추락낙하 사고 시 지면과 충돌하는 고준위폐기물 처분용기의 비선형구조해석)

  • Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.2
    • /
    • pp.75-86
    • /
    • 2019
  • The biggest obstacle in the nuclear power generation is the high level radioactive waste such as the spent nuclear fuel. High level radioactivities and generated heat make the safe treatment of the spent nuclear fuel very difficult. Nowadays, the only treatment method is a deep geological disposal technology. This paper treats the structural safe design problem of the spent nuclear fuel disposal canister which is one of the core technologies of the deep geological disposal technology. Especially, this paper executed the nonlinear structural analysis for the stresses and deformations occurring in the canister due to the impulsive force applied to the spent nuclear fuel disposal canister in the case of an accidental drop and ground impact event from the transportation vehicle in the repository. The main content of the analysis is about that the impulsive force is obtained using the commercial rigid body dynamic analysis computer code, RecurDyn, and the stress and deformation caused by this impulsive force are obtained using the commercial finite element static structural analysis computer code, NISA. The analysis results show that large stresses and deformations may occur in the canister, especially in the rid or the bottom of the canister, due to the impulsive force occurring during the collision impact period.

A Comparative Study on the Economics of Reprocessing and Direct Disposal of Nuclear Spent Fuel (사용후 핵연료의 제처리와 직접 처분의 경제성 비교 연구)

  • Kang, Seong-Ku;Song, Jong-Soon
    • Journal of Radiation Protection and Research
    • /
    • v.25 no.2
    • /
    • pp.89-96
    • /
    • 2000
  • Nuclear fuel cycle choices and costs are important in considering energy policies, fuel diversity, security of supply and associated social and environmental impacts. Particularly, the nuclear spent fuel is very important in view of high activity and the need of long term management. This study focuses on the comparison of reprocessing and direct disposal of nuclear spent fuel in terms of cost, safety and public acceptability. The results of the study show that the direct disposal is about 7% more economical than the reprocessing. In terms of safety, the results show that the risk of vitrified HLW (high-level radioactive waste) is less than directly disposed spent fuel. For the public acceptability, both of the methods are not well understood and therefore they are not accepted. In conclusion, it is necessary to guarantee the safety of the both spent fuel processing methods through continuous development of associated technology and to have a fuel cycle policy which should consider not only the economics but also social and environmental impacts.

  • PDF

The Prediction Methods of Iodine-129 release rate : Model Development

  • Park, Jin-Beak;Lee, Kun-Jai;Kang, Duck-Won;Shin, Sang-Woon;Park, Kyung-Rok
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.879-884
    • /
    • 1995
  • The results of performance assessment analyses have shown that the long-lived radionuclides such as I-129 control the potential individual dose impact to the public. I-129 is difficult-to-measure(DTM) in low-level waste because it is non-gamma emitting radionuclides and exists at extremely low concentrations in radioactive waste generated by nuclear reactors. In this study, computer modeling technique to predict release rate of I-129 is developed to provide another tools far performance assessment of land disposal facilities and characteristics of radwaste. Model suggested in this study will give conservative values of I-129 release rate far determination of radwaste characteristics. More detailed approach is implemented to account for release conditions of fuel source-nuclides. 1-131 concentration measured from reactor coolant and released fraction from tramp fuel have dominant roles in calculating release rate of I-129 with fuel defect conditions.

  • PDF

Preliminary Selection of Safety-Relevant Radionuclides for Long-Term Safety Assessment of Deep Geological Disposal of Spent Nuclear Fuel in South Korea

  • Kyu Jung Choi;Shin Sung Oh;Ser Gi Hong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.451-463
    • /
    • 2023
  • With South Korea increasingly focusing on nuclear energy, the management of spent nuclear fuel has attracted considerable attention in South Korea. This study established a novel procedure for selecting safety-relevant radionuclides for long-term safety assessments of a deep geological repository in South Korea. Statistical evaluations were performed to identify the design basis reference spent nuclear fuels and evaluate the source term for up to one million years. Safety-relevant radionuclides were determined based on the half-life criteria, the projected activities for the design basis reference spent nuclear fuel, and the annual limit of ingestion set by the Nuclear Safety and Security Commission Notification No. 2019-10 without considering their chemical and hydrogeological properties. The proposed process was used to select 56 radionuclides, comprising 27 fission and activation products and 29 actinide nuclides. This study explains first the determination of the design basis reference spent nuclear fuels, followed by a comprehensive discussion on the selection criteria and methodology for safety-relevant radionuclides.

Review of Aging Management for Concrete Silo Dry Storage Systems

  • Donghee Lee;Sunghwan Chung;Yongdeog Kim;Taehyung Na
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.531-541
    • /
    • 2023
  • The Wolsong Nuclear Power Plant (NPP) operates an on-site spent fuel dry storage facility using concrete silo and vertical module systems. This facility must be safely maintained until the spent nuclear fuel (SNF) is transferred to an external interim or final disposal facility, aligning with national policies on spent nuclear fuel management. The concrete silo system, operational since 1992, requires an aging management review for its long-term operation and potential license renewal. This involves comparing aging management programs of different dry storage systems against the U.S. NRC's guidelines for license renewal of spent nuclear fuel dry storage facilities and the U.S. DOE's program for long-term storage. Based on this comparison, a specific aging management program for the silo system was developed. Furthermore, the facility's current practices-periodic checks of surface dose rate, contamination, weld integrity, leakage, surface and groundwater, cumulative dose, and concrete structure-were evaluated for their suitability in managing the silo system's aging. Based on this review, several improvements were proposed.

Tritium radioactivity estimation in cement mortar by heat-extraction and liquid scintillation counting

  • Kang, Ki Joon;Bae, Jun Woo;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3798-3807
    • /
    • 2021
  • Tritium extraction from radioactively contaminated cement mortar samples was performed using heating and liquid scintillation counting methods. Tritiated water molecules (HTO) can be present in contaminated water along with water molecules (H2O). Water is one of the primary constituents of cement mortar dough. Therefore, if tritium is present in cement mortar, the buildings and structures using this cement mortar would be contaminated by tritium. The radioactivity level of the materials in the environment exposed to tritium contamination should be determined for their disposal in accordance with the criteria of low-level radioactive waste disposal facility. For our experiments, the cement mortar samples were heated at different temperature conditions using a high-temperature combustion furnace, and the extracted tritium was collected into a 0.1 M nitric acid solution, which was then mixed with a liquid scintillator to be analyzed in a liquid scintillation counter (LSC). The tritium extraction rate from the cement mortar sample was calculated to be 90.91% and 98.54% corresponding to 9 h of heating at temperatures of 200 ℃ and 400 ℃, respectively. The tritium extraction rate was close to 100% at 400 ℃, although the bulk of cement mortar sample was contaminated by tritium.

Engineering-scale Validation Test for the T-H-M Behaviors of a HLW Disposal System (고준위폐기물 처분시스템의 열적-수리적-역학적 거동 규명을 위한 공학적 규모의 실증시험)

  • Lee Jae-Owan;Park Jeong-Hwa;Cho Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.2
    • /
    • pp.197-207
    • /
    • 2006
  • The engineering performance of a high level waste repository is significantly dependent upon the T-H-M behavior in the engineered barrier system. An engineering-scale test facility (KENTEX) was set up to validate the T-H-M behaviors in the buffer of a reference disposal system developed in the 2002. The validation tests started on May 31, 2005 and is now in progress. The KENTEX facility and validation test programme are introduced, and pre-operation calculations are also presented to give information on the sensitive location of sensors and operational conditions. This test will provide information (e.g., large-scale apparatus, sensors, monitoring system etc.) needed for 'in-situ' tests, make the validation of a T-H-M model for the T-H-M performance assessment of the reference disposal system, and demonstrate the engineering feasibility of fabricating and emplacing the buffer of a repository.

  • PDF

Thermal Conductivity Evaluation of Compacted Bentonite Buffers Considering Temperature Variations (압축 벤토나이트 완충재의 온도에 따른 열전도도 평가)

  • Yoon, Seok;Park, Seunghun;Kim, Min-Seop;Kim, Geon-Young;Lee, Seung-Rae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.1
    • /
    • pp.43-49
    • /
    • 2020
  • An engineered barrier system (EBS) for the geological disposal of high-level radioactive waste (HLW) consists of a disposal canister packed with spent fuel, buffer material, backfill material, and gap-filling material. The buffer material fills the space between the canister and the near-field rock, thus serving to restrain the release of radionuclides and protect the canister from groundwater penetration. Furthermore, as significant amounts of heat energy are released from the canister to the surrounding rock, the thermal conductivity of the buffer plays an important role in maintaining the safety of the entire disposal system. Therefore, given the high levels of heat released from disposal canisters, this study measured the thermal conductivities of compacted bentonite buffers from Gyeongju under temperature variations ranging 25 to 80~90℃. There was a 5~20% increase in thermal conductivity as the temperature increased, and the temperature effect increased as the degree of saturation increased.

Suggestion on Screening Concept of Radionuclides to be Considered for the Radiological Safety Assessment of the Domestic KBS-3 Type Geological Disposal Facility of High-level Radioactive Waste(HLW) (국내 KBS-3 방식 고준위방사성폐기물 심층처분시설 방사선학적 안전성 평가 대상 방사성핵종 목록 선정개념(안) 제언)

  • Sukhoon Kim;Donghyun Lee;Dong-Keuk Park
    • Journal of Radiation Industry
    • /
    • v.17 no.1
    • /
    • pp.45-59
    • /
    • 2023
  • The transport calculation for a wide variety of radionuclides contained in high-level radioactive waste, especially spent nuclear fuel, is computationally difficult, and input data collection for this also take a considerable amount of time. Accordingly, considering limited resources, it is possible to reduce the calculation time while minimizing impact on accuracy by including only radionuclides important to calculation result through applying some criteria among potential radiation source terms that may release into environment. In this paper, therefore, we reviewed and analyzed the screening process performed to select radionuclides to be considered in the safety assessment for the KBS-3 type repository in Sweden and Finland. In both countries, it was confirmed that a list of radionuclides was selected by comprehensively considering screening criteria such as radioactivity inventory, half-life, radiotoxicity, risk quotient, and transport properties, and etc. A comparison of radionuclides included in the radiological safety assessment in both countries suggests that most of nuclides are considered in common, and a few nuclides considered only in one country are due to differences in decay chain treatment or spent fuel types. As of now, since most of information on the disposal facility in Korea has not been determined, it is necessary to comprehensively model release and transport of all radionuclides considered in Sweden and Finland when performing the radiological safety assessment. Based on these results, we derived the screening concept of selecting a list of radionuclides to be considered in the radiological safety assessment for the domestic KBS-3 type geological disposal facility, and this result is expected to be used as technical basis for confirming conformity with the safety objective. In a more detailed evaluation reflecting domestic characteristics in the future, it would be desirable to consider only radionuclides selected in accordance with the screening procedure. However, further research should be conducted to determine the quantitative limit for each criteria.

Development of Biosphere Assessment Modeling Strategy for Deep Geological Disposal in Generic Site of the Korean Peninsula

  • Do Hyun Kim;Wontak Lee;Dongki Kim;Jonghyun Kim;Joowan Park
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.1
    • /
    • pp.149-164
    • /
    • 2023
  • As part of the safety case development for generic disposal sites in Korea, it is necessary to develop generic assessment models using various geosphere-biosphere interfaces (GBIs) and potentially exposed groups (PEGs) that reflect the natural environmental characteristics and the lifestyles of people in Korea. In this study, a unique modeling strategy was developed to systematically construct and select Korean generic biosphere assessment models. The strategy includes three process steps (combination, screening, and experts' scoring) for the biosphere system conditions. First, various conditions, such as climate, topography, GBIs, and PEGs, were combined in the biosphere system. Second, the combined calculation cases were configured into interrelation matrices to screen out some calculation cases that were highly unlikely or less significant in terms of the exposure dose. Finally, the selected calculation cases were prioritized based on expert judgment by scoring the knowledge, probability, and importance. The results of this study can be implemented in the development of biosphere assessment models for Korean generic sites. It is believed that this systematic methodology for selecting the candidate calculation cases can contribute to increasing the confidence of future site-specific biosphere assessment models.