• Title/Summary/Keyword: nuclear waste disposal

Search Result 548, Processing Time 0.022 seconds

The influence of air gaps on buffer temperature within an engineered barrier system

  • Seok Yoon;Gi-Jun Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4120-4124
    • /
    • 2023
  • High-level radioactive waste produced by nuclear power plants are disposed subterraneously utilizing an engineered barrier system (EBS). A gap inevitably exists between the disposal canisters and buffer materials, which may have a negative effect on the thermal transfer and water-blocking efficiency of the system. As few previous experimental works have quantified this effect, this study aimed to create an experimental model for investigating differences in the temperature changes of bentonite buffer in the presence and absence of air gaps between it and a surrounding stainless steel cell. Three test scenarios comprised an empty cell and cells partially or completely filled with bentonite. The temperature was measured inside the buffers and on the inner surface of their surrounding cells, which were artificially heated. The time required for the entire system to reach 100℃ was approximately 40% faster with no gap between the inner cell surface and the bentonite. This suggests that rock-buffer spaces should be filled in practice to ensure the rapid dissipation of heat from the buffer materials to their surroundings. However, it can be advantageous to retain buffer-canister gaps to lower the peak buffer temperature.

Some notes on the Timing of Geological Disposal of CANDU Spent Fuels (CANDU 사용후핵연료 처분 착수 시점에 관한 소고)

  • Choi, Heui-Joo;Kook, Dong-Hak;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.2
    • /
    • pp.167-172
    • /
    • 2010
  • CANDU spent fuel is to be disposed of at repository finally rather than recycled because of its low fissile nuclide concentration. But the difficult situation of finding a repository site can not help introducing a interim storage in the short term. It is required to find an optimum timing of geological disposal of CANDU spent fuels related to the interim storage operation period. The major factors for determining the disposal starting time are considered as safety, economics, and public acceptance. Safety factor is compared in terms of the decay heat and non-proliferation. Economics factor is compared from the point of the operation cost, and public acceptance factor is reviewed from the point of retrievability and inter-generation ethics. This paper recommended the best solution for the disposal starting time by analyzing the above factors. It is concluded that the optimum timing for the CANDU spent fuel disposal is around 2041 and that the sooner disposal time, the better from the point of technical and safety aspects.

Desorption Characteristics of $H^{14}CO_3$ ion from Spent Ion Exchanged Resin by Solution Stripping Technology

  • Park Geun-IL;Kim In-Tae;Kim Kwang-Wook;Lee Jung-Won;Won Jang-Sik;Yang Ho-Yeon
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.214-221
    • /
    • 2005
  • Spent ion-exchanged resin generated from various purification systems in CANDU reactor is causing concern due to a limited storage capacity and safe disposal. As a suggestion for a proper treatment technology for the spent ion-exchanged resin containing a high activity of C­14 radionuclide which would be classified as Class A and C wastes, a fundamental study for the development of C-14 removal technology from a spent resin was performed. The adsorption characteristics of the inactive $HCO_3^-$ ion and other ions in a stripping solution on IRN-150 mixed resin was evaluated and the removal technology of the $HCO_3^-$ ion adsorbed on IRN-150 by an alkaline stripping method was proposed.

  • PDF

Preliminary Evaluation of Clearance Level of Uranium in Metal Waste Using the RESRAD-RECYCLE Code (RESRAD-RECYCLE 전산코드를 활용한 금속폐기물 내 우라늄 자체처분 허용농도 예비 평가)

  • SunWoo Lee;JungHwan Hong;JungSuk Park;KwangPyo Kim
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.457-469
    • /
    • 2023
  • The clearance level by nuclide is announced by the Nuclear Safety and Security Commission. However, the clearance level of uranium existing in nature has not been announced, and research is needed. Therefore, the purpose of this study was to evaluate the clearance level of uranium nuclides appropriate to domestic conditions preliminary. For this purpose, this study selected major processes for recycling metal wastes and analyzed the exposure scenarios and major input factors by investigating the characteristics of each process. Then, the radiation dose to the general public and workers was evaluated according to the selected scenarios. Finally, the results of the radiation dose per unit radioactivity for each scenario were analyzed to derive the clearance level of uranium in metal waste. The results of the radiation dose assessment for both the general public and workers per unit radioactivity of uranium isotopes were shown to meet the allowable dose (individual dose of 10 µSv y-1 and collective dose of 1 Man-Sv y-1) regulated by the Nuclear Safety and Security Commission. The most conservative scenarios for volumetric and surface contamination were evaluated for the handling of the slag generated after the melting of the metal waste and the direct reuse of the contaminated metal waste into the building without further disposal. For each of these scenarios, the radioactivity concentration by uranium isotope was calculated, and the clearance level of uranium in metal waste was calculated through the radioactivity ratio by enrichment. The results of this study can be used as a basic data for defining the clearance level of uranium-contaminated radioactive waste.

APPLICATION OF COLD SPRAY COATING TECHNIQUE TO AN UNDERGROUND DISPOSAL COPPER CANISTER AND ITS CORROSION PROPERTIES

  • Lee, Min-Soo;Choi, Heui-Joo;Choi, Jong-Won;Kim, Hyung-Jun
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.557-566
    • /
    • 2011
  • A cold spray coating (CSC) of copper was studied for its application to a high-level radioactive waste (HLW) disposal canister. Several copper coatings of 10 mm thick were fabricated using two kinds of copper powders with different oxygen contents, and SS 304 and nodular cast iron were used as their base metal substrates. The fabricated CSC coppers showed a high tensile strength but were brittle in comparison with conventional non-coating copper, hereinafter defined to as "commercial copper". The corrosion behavior of CSC coppers was evaluated by comparison with commercial coppers, such as extruded and forged coppers. The polarization test results showed that the corrosion potential of the CSC coppers was closely related to its purity; low-purity (i.e., high oxygen content) copper exhibited a lower corrosion potential, and high-purity copper exhibited a relatively high corrosion potential. The corrosion rate converted from the measured corrosion current was not, however, dependent on its purity: CSC copper showed a little higher rate than that of commercial copper. Immersion tests in aqueous HCl solution showed that CSC coppers were more susceptible to corrosion, i.e., they had a higher corrosion rate. However, the difference was not significant between commercial copper and high-purity CSC copper. The decrease of corrosion was observed in a humid air test presumably due to the formation of a protective passive film. In conclusion, the results of this study indicate that CSC application of copper could be a useful option for fabricating a copper HLW disposal canister.

A Study on the Condition Analysis and Improvement of Domestic Medical 99Mo/99mTc Generators Self-disposal (국내 의료용 99Mo/99mTc Generator 자체 처분 지침 현황 분석 및 개선 방향에 대한 연구)

  • Ryu, Chan-Ju;Hong, Seong-Jong
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.297-303
    • /
    • 2019
  • The nuclear medicine department of a domestic medical institution uses $^{99m}TcI$, a radionuclide, from $^{99}Mo/^{99m}TcI$ Generator, to inject radioactive drugs into patients. Among the expired generators, imported from foreign countries, the medical institution implements its own disposal. Each medical institution shall satisfy the permitted in-house disposal concentration of radioactive wastes. The guidelines for self-disposal presented in Korea suggested that self-disposal can be performed 80 days after the generator is used. The purpose of these guidelines is to analyze them by comparing them with the data measured directly with the generator and to study if they are feasible. As a result, the generator with a capacity of 1,000 mCi has the longest half-life, and when tested with a high-radiation Mo(molybdenum) column, the number of days that are below the permitted concentration of body disposal with radioactive waste was 72 days and 71 days that were derived from direct column measurement. The results of the direct study confirmed that the guidelines for in-house disposal in Korea were reasonable, as there were 8 to 9 days of storage compared to the number of in-house disposal days provided in the guidelines.

Development of Sorption Database (KAERI-SDB) for the Safety Assessment of Radioactive Waste Disposal (방사성폐기물 처분안전성 평가 자료 제공을 위한 핵종 수착 데이터베이스(KAERI-SDB) 개발)

  • Lee, Jae-Kwang;Baik, Min-Hoon;Jeong, Jongtae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.1
    • /
    • pp.41-54
    • /
    • 2013
  • Radionuclide sorption data is necessary for the safety assessment of radioactive waste disposal. However the use of sorption database is often limited due to the accessability. A web-based sorption database program named KAERI-SDB has been developed to provide information on the sorption of radionuclides onto geological media as a function of geochemical conditions. The development of KAERI-SDB was achieved by improving the performance of pre-existing sorption database program (SDB-21C) developed in 1998 and considering user's requirements. KAERI-SDB is designed that users can access it by using a web browser. Main functions of KAERI-SDB include (1) log-in/member join, (2) search and store of sorption data, and (3) chart expression of search results. It is expected that KAERI-SDB could be widely utilized in the safety assessment of radioactive waste disposal by enhancing the accessibility to users who wants to use sorption data. Moreover, KAERI-SDB opened to public would also improve the reliability and public acceptance on the radioactive waste disposal programs.

Uncertainty Management on Human Intrusion Scenario Assessment of the Near Surface Disposal Facility for Low and Intermediate-Level Radioactive Waste: Comparative Analysis of RESRAD and GENII (중저준위방사성폐기물 표층처분시설의 인간침입 시나리오 평가에 대한 불확실성 관리: RESRAD와 GENII의 비교분석)

  • Kim, Minseong;Hong, Sung-Wook;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.4
    • /
    • pp.369-380
    • /
    • 2017
  • In order to manage the uncertainty about the evaluation and analysis of the human intrusion scenario of the Gyeongju Low and Intermediate Level Radioactive Waste(LILW) disposal facility, the calculation result by the GENII code was assessed using the RESRAD code, which was developed to evaluate the radiation effects of contaminated soil. The post-drilling scenario was selected as a human intrusion scenario into the near-surface disposal facility to analyze the uncertainty of the modeling by identifying any limitations in the simulation of each code and comparing the evaluation results under the same input data conditions. The results revealed a difference in the migration of some nuclides between the codes, but confirmed that the dose trends at the end of the post-closure control period were similar for all exposure pathways. Based on the results of the dose evaluation predicted by RESRAD, sensitivity analysis on the input factors was performed and major input factors were derived. The uncertainty of the modeling results and the input factors were analyzed and the reliability of the safety evaluation results was confirmed. The results of this study can be applied to the implementation 'Safety Case Program' for the Gyeongju LILW disposal facility.

Research Status and Roles of Natural Analogue Studies in the Radioactive Waste Disposal (방사성폐기물 처분에서 자연유사연구 역할 및 연구 동향)

  • Baik, Min-Hoon;Park, Tae-Jin;Kim, In-Young;Choi, Kyung-Woo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.2
    • /
    • pp.133-156
    • /
    • 2013
  • Natural analogue studies play an important role in the safety case which requires multiple lines of evidence including the safety assessment for the geological disposal of radioactive wastes. In this study, foreign status of natural analogue studies was investigated by summarizing natural analogue results according to the research topics related with repository materials and radionuclide migration and retardation. Main results, issues, and applicability of the foreign natural analogue studies were also analyzed. The results of domestic natural analogue studies were classified into studies using uranium ore bodies, rocks, groundwaters, and archeological artifacts, respectively, and their main results were summarized. There are massive materials for natural analogue studies which have been carried out during last several decades but they have not been actively applied to the safety assessment and safety case development for the radioactive waster disposal. Thus, in this study, applicable methods of natural analogues were summarized and a methodology for improving their applicability was examined. Natural analogue study is apparently necessary to improve and illustrate the reliability of safety assessment for a radioactive waste repository. Therefore, it is necessary to develop a methodology and construct a natural analogue information database for the application of the results from natural analogue studies to safety case development.

Research and Development for Decontamination System of Spent Resin in Hanbit Nuclear Power Plant (한빛원전 폐수지 제염공정 개발연구)

  • Sung, Gi Hong
    • Journal of Radiation Industry
    • /
    • v.9 no.4
    • /
    • pp.217-221
    • /
    • 2015
  • When reactor coolant leaks occur due to cracks of a steam generator's tube, radioactive materials contained in the primary cooling water in nuclear power plant are forced out toward the secondary systems. At this time the secondary water purification resin in the ion exchange resin tower of the steam generator blowdown system is contaminated by the radioactivity of the leaked radioactive materials, so we pack this in special containers and store temporarily because we could not dispose it by ourselves. If steam generator tube leakage occurs, it produces contaminated spent resins annually about 5,000~7,000 liters. This may increase the amount of nuclear waste productions, a disposal working cost and a unit price of generating electricity in the plant. For this reasons, it is required to develop a decontamination process technique for reducing the radioactive level of these resins enough to handle by the self-disposal method. In this research, First, Investigated the structure and properties of the ion exchange resin used in a steam generator blowdown system. Second, Checked for a occurrence status of contaminated spent resin and a disposal technology. Third, identified the chemical characteristics of the waste radionuclides of the spent resin, and examined ionic bonding and separation mechanism of radioactive nuclear species and a spent resin. Finally, we carried out the decontamination experiment using chemicals, ultrasound, microbubbles, supercritical carbon dioxide to process these spent resin. In the case of the spent resin decontamination method using chemicals, the higher the concentration of the drug decontamination efficiency was higher. In the ultrasound method, foreign matter of the spent resin was removed and was found that the level of radioactivity is below of the MDA. In the microbubbles method, we found that the concentration of the radioactivity decreased after the experiment, so it can be used to the decontamination process of the spent resin. In supercritical carbon dioxide method, we found that it also had a high decontamination efficiency. According to the results of these experiments, almost all decontamination method had a high efficiency, but considering the amounts of the secondary waste productions and work environment of the nuclear power plant, we judged the ultrasound and supercritical carbon dioxide method are suitable for application to the plant and we established the plant applicable decontamination process system on the basis of these two methods.