• Title/Summary/Keyword: nuclear waste disposal

Search Result 548, Processing Time 0.024 seconds

Radwaste characteristics and Disposal Facility Waste Acceptance Criteria (국내 방사성폐기물 특성과 방사성폐기물 처분시설 폐기물인수기준)

  • Sung, Suk-Hyun;Jeong, Yi-Yeong;Kim, Ki-Hong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.347-356
    • /
    • 2008
  • The purpose of Radioactive Waste Acceptance Criteria(WAC) is to verify a radioactive waste compliance with radioactive disposal facility requirements in order to maintain a disposal facility's performance objectives and to ensure its safety. To develop WAC which is conformable with domestic disposal site conditions, we furthermore analysed the WAC of foreign disposal sites similar to the Kyung-Ju disposal site and the characteristics of various wastes which are being generated from Korea nuclear facilities. Radioactive WAC was developed in the technical cooperation with the Korea Atomic Energy Research Institute in consideration of characteristics of the wastes which are being generated from various facilities, waste generators' opinions and other conditions. The established criteria was also discussed and verified at an advisory committee which was comprised of some experts from universities, institutes and the industry. So radioactive WAC was developed to accept all wastes which are being generated from various nuclear facilities as much as possible, ensuring the safety of a disposal facility. But this developed waste acceptance criteria is not a criteria to accept all the present wastes generated from various nuclear facilities, so waste generators must seek an alternative treatment method for wastes which were not worth disposing of, and then they must treat the wastes more to be acceptable at a disposal site. The radioactive disposal facility WAC will continuously complement certain criteria related to a disposal concentration limit for individual radionuclide in order to ensure a long-term safety.

  • PDF

MOVING FORWARD WITH RADIOACTIVE WASTE MANAGEMENT IN THE UK

  • Atherton, Elizabeth;Mathieson, John
    • Nuclear Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.697-702
    • /
    • 2007
  • Radioactive waste has been produced in the UK for many decades. Since the 1950' s much of this has been associated with civil nuclear power production and the nuclear weapons programme. There have been a number of unsuccessful attempts in the UK since the 1980s to deal with the waste and find suitable sites for its disposal. However, the UK Government has addressed this and in 2001 introduced the "Managing Radioactive Waste Safely" programme. The aim of this was to make decisions on the long-term radioactive waste management policy through stakeholder engagement. In 2006, it adopted a policy of geological disposal for higher activity wastes and following further consultations, is now at the stage of choosing how that policy should be implemented.

The Study for Reducing the Borrowing Cost for LILW Disposal (중·저준위방사성폐기물처분사업에서 금융비용 감소를 위한 연구)

  • Kim, Beomin;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.2
    • /
    • pp.89-96
    • /
    • 2014
  • The repository for the disposal of LILW which is generated from nuclear power plants and industries is expected to be completed in 2014. For the disposal of LILW, it is important to secure a disposal facility itself, but it is also very important to establish a reasonable charging system which all shareholders are satisfied with. Korea's disposal fee for LILW is higher than other countries' fee, which is a burden to waste generators as well as the waste management organization. The partial reason for the high disposal fee is put on the high social and construction cost when compared with other countries. However the major reason is put on the excessive borrowing cost that is used for the construction of the LILW disposal facility. In this study, we proposed the way to reduce the excessive borrowing cost for sustainable project managements of LILW disposal by analyzing a cost structure.

Concepts of heat dissipation of a disposal canister and its computational analysis

  • Minseop Kim;Minsoo Lee;Jinseop Kim;Seok Yoon
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4173-4180
    • /
    • 2023
  • The stability of engineered barriers in high-level radioactive waste disposal systems can be influenced by the decay heat generated by the waste. This study focuses on the thermal analysis of various canister designs to effectively lower the maximum temperature of the engineered barrier. A numerical model was developed and employed to investigate the heat dissipation potential of copper rings placed across the buffer. Various canister designs incorporating copper rings were presented, and numerical analysis was performed to identify the design with the most significant temperature reduction effect. The results confirmed that the temperature of the buffer material was effectively lowered with an increase in the number of copper rings penetrating the buffer. Parametric studies were also conducted to analyze the impact of technical gaps, copper thickness, and collar height on the temperature reduction. The numerical model revealed that the presence of gaps between the components of the engineered barrier significantly increased the buffer temperature. Furthermore, the reduction in buffer temperature varied depending on the location of the gap and collar. The methods proposed in this study for reducing the buffer temperature hold promise for contributing to cost reduction in radioactive waste disposal.

A Case Study on the Safety Assessment for Groundwater Pathway in a Near-Surface Radioactive Waste Disposal Facility

  • Park, Joo-Wan;Chang, Keun-Moo;Kim, Chang-Lak
    • Nuclear Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.232-241
    • /
    • 2002
  • A safety assessment is carried out for the near-surface radioactive waste disposal in the reference engineered vault facility. The analysis is mainly divided into two parts. One deals with the release and transport of radionuclide in the vault and unsaturated zone. The other deals with the transport of radionuclide in the saturated zone and radiological impacts to a human group under well drinking water scenario. The parameters for source-term, geosphere and biosphere models are mainly obtained from the site specific data. The results show that the annual effective doses are dominated by long lived, mobile radionuclides and their associated daughters. And it is found that the total effective dose for drinking water is far below the general criteria of regulatory limit for radioactive waste disposal facility.

Deep Borehole Disposal of Nuclear Wastes: Opportunities and Challenges

  • Schwartz, Franklin W.;Kim, Yongje;Chae, Byung-Gon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.4
    • /
    • pp.301-312
    • /
    • 2017
  • The concept of deep borehole disposal (DBD) for high-level nuclear wastes has been around for about 40 years. Now, the Department of Energy (DOE) in the United States (U.S.) is re-examining this concept through recent studies at Sandia National Laboratory and a field test. With DBD, nuclear waste will be emplaced in boreholes at depths of 3 to 5 km in crystalline basement rocks. Thinking is that these settings will provide nearly intact rock and fluid density stratification, which together should act as a robust geologic barrier, requiring only minimal performance from the engineered components. The Nuclear Waste Technical Review Board (NWTRB) has raised concerns that the deep subsurface is more complicated, leading to science, engineering, and safety issues. However, given time and resources, DBD will evolve substantially in the ability to drill deep holes and make measurements there. A leap forward in technology for drilling could lead to other exciting geological applications. Possible innovations might include deep robotic mining, deep energy production, or crustal sequestration of $CO_2$, and new ideas for nuclear waste disposal. Novel technologies could be explored by Korean geologists through simple proof-of-concept experiments and technology demonstrations.

Conceptual Design for Repackaging of PWR Spent Nuclear Fuel (경수로 사용후핵연료 재포장 개념(안) 수립)

  • Sang-Hwan Lee;Chang-Min Shin;HyunGoo Kang;Chun-Hyung Cho;HaeRyong Jung
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.519-532
    • /
    • 2023
  • Spent nuclear fuel(SNF) is stored in nuclear power plants for a certain period of time and then transported to an interim storage facility. After that, SNF is finally repackaged in a disposal canister at an encapsulation plant for final disposal. Finland and Sweden, leading countries in SNF disposal technology, have already completed designing of spent fuel encapsulation plant. In particular, the encapsulation plant construction in Finland is near completion. When it comes to South Korea, as the amount of SNF production and disposal plan is different from those in Finland and Sweden, it is difficult to apply the concepts of these contries as is. Therefore, it is necessary to establish the spent fuel repackaging concept and to derive each operating and repackaging procedures by considering annual disposal plan of South Korea. The results of this study is expected to be used to establish the concept of optimized encapsulation plant through further research.

Discussion about the Self Disposal Guideline of Medical Radioactive Waste (의료용 방사성폐기물 자체처분 가이드라인에 관한 고찰)

  • Lee, Kyung-Jae;Sul, Jin-Hyung;Lee, In-Won;Park, Young-Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.2
    • /
    • pp.13-27
    • /
    • 2017
  • Purpose In the procedure of domestic medical radioactive self-disposal, there are many requests of supplementation and difficulties on the screening process. In this regard, presentation of basic guideline will improve the work processing efficiency of medical institution radioactive waste. From 2015 to 2016, We reviewed and compared a supplementary requests of domestic fifteen medical institution radioactive self-disposal Plan & Procedure manual. In connection with this, we derive the details of the radioactive waste document based on the relative regulation of nuclear safety Act. The representative supplementary requests of Korea Institute of Nuclear Safety are disposal method of non-flammability radioactive waste, storage method of scheduled self-disposal waste, the legitimacy of self-disposal and pre-treatment of self-disposal, reference radioactivity of disused filter and output of storage period, attachment the evidential matter of measurement efficiency when using a gamma counter. Through establishing a medical radioactive waste guideline, we can clearly suggest a classification standard of radioactive nuclide and the type of occurrence. As a result, we can confirm the reduction of examination processing period while preparing a self-disposal document and there is no spending expenses for business agency. Also, the storage efficiency of facility will better and reduce the economic expenses. On the basis of this guideline, we will expect a contribution to the improvement of work efficiency for officials who has a working-level difficulty of radioactive waste self-disposal.

  • PDF

Consideration on supplementary matters when preparing radioactive waste self-disposal (방사성폐기물 자체처분 작성시 보완사항에 관한 고찰)

  • Lee, Kyung-Jae;Park, Sung-woo;Park, Young-Jae;Park, In-Sik
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.26 no.1
    • /
    • pp.15-26
    • /
    • 2022
  • Purpose Recently, in the process of examining the self-disposal of radioactive waste by the Korea Institute of Nuclear Safety, it is difficult to reach the final approval process for self-disposal. In connection with this, we intend to increase the processing efficiency of self-disposal and strengthen safety by analyzing cases of recent supplementary matters. Materials and Methods From 2018 to 2021, we compare and review a supplementary requests that preparing the procedures and plans for the self-disposal of radioactive waste by 20 institutions. In this regard, based on the provisions of the Atomic Energy Safety Act, we derive a detailed proposals for the self-disposal of radioactive waste by arranging the review processing period calculation and supplementary requests that occurred during the review process. Results The representative supplementary requests of the Korea Institute of Nuclear Safety are the calculation of the storage period by type and nuclide of radioactive waste, the contents of the packaging container, the RASIS reporting method, the planned storage method for self-disposal, confirmation of the final disposal company, and the storage period of the waste filter Calculation, radioactive labeling, etc. And it is emphasized as important. Conclusion The expected effects of the guidelines reflecting the latest supplements include reduction of the time required for document preparation and increase of work processing efficiency, improvement of storage efficiency in the radioactive waste storage room, and economic cost reduction. If the radioactive waste self-disposal guideline presented in this study is applied to the field, it is thought that it will be helpful in improving the work efficiency of those who are experiencing difficulties.

Managing the Back-end of the Nuclear Fuel Cycle: Lessons for New and Emerging Nuclear Power Users From the United States, South Korea and Taiwan

  • Newman, Andrew
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.435-446
    • /
    • 2021
  • This article examines the consequences of a significant spent fuel management decision or event in the United States, South Korea and Taiwan. For the United States, it is the financial impact of the Department of Energy's inability to take possession of spent fuel from commercial nuclear power companies beginning in 1998 as directed by Congress. For South Korea, it is the potential financial and socioeconomic impact of the successful construction, licensing and operation of a low and intermediate level waste disposal facility on the siting of a spent fuel/high level waste repository. For Taiwan, it is the operational impact of the Kuosheng 1 reactor running out of space in its spent fuel pool. From these, it draws six broad lessons other countries new to, or preparing for, nuclear energy production might take from these experiences. These include conservative planning, treating the back-end of the fuel cycle holistically and building trust through a step-by-step approach to waste disposal.