• Title/Summary/Keyword: nuclear research reactor

Search Result 1,721, Processing Time 0.04 seconds

Optimization of automatic power control of pulsed reactor IBR-2M in the presence of instability

  • Pepelyshev, Yu.N.;Davaasuren, Sumkhuu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2877-2882
    • /
    • 2022
  • The paper presents the main results of computational and experimental optimization of the automatic power control system (AC) of the IBR-2M pulsed reactor in the presence of a high level of oscillatory instability. Optimization of the parameters of the AC made it possible to significantly reduce the influence of random and deterministic oscillations of reactivity on the noise of the pulse energy, as well as to sharply reduce the manifestation of the oscillatory instability of the reactor. As a result, the safety and reliability of operation of the reactor has increased substantially.

Study of atmosphere parameters of the IVV-2M reactor hall

  • M.E. Vasyanovich;M.V. Zhukovsky;E.I. Nazarov;I.M. Russkikh
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.3935-3939
    • /
    • 2023
  • The paper presents the results of a study of radioactive noble gases and from decay products in the atmosphere of the reactor hall of the research nuclear reactor IVV-2M. The distribution of short-lived 88Rb and 138Cs activity by sizes of aerosol particles was measured in the range of 0.5-1000 nm. It is shown that radioactive aerosols are characterized by three main modes with AMTD 2-3 nm, 7-15 nm and 400 nm. About 70% of aerosol activity is due to 88Rb. The equilibrium factor between 88Kr and 88Rb is 0.2 ± 0.1. The total concentration of aerosols particles was measured using an aerosol diffusion spectrometer. The value of unattached fraction of radioactive aerosols in the atmosphere of reactor hall IVV2M was f = 0.15-0.25 at the average total aerosol particles concentration from 20,000 cm3 to 53,000 cm3.

Current Status and Future Prospective of Advanced Radiation Resistant Oxide Dispersion Strengthened Steel (ARROS) Development for Nuclear Reactor System Applications

  • Kim, Tae Kyu;Noh, Sanghoon;Kang, Suk Hoon;Park, Jin Ju;Jin, Hyun Ju;Lee, Min Ku;Jang, Jinsugn;Rhee, Chang Kyu
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.572-594
    • /
    • 2016
  • As one of the Gen-IV nuclear energy systems, a sodium-cooled fast reactor (SFR) is being developed at the Korea Atomic Energy Research Institute. As a long-term national research project, advanced radiation resistant oxide dispersion strengthened steel (ARROS) is being developed as an in-core fuel cladding tube material for a SFR in the future. In this paper, the current status of ARROS development is reviewed and its future prospective is discussed.

Remote NDT for Inspection of Reactor Vessel Components of fast Breeder Test Reactor

  • Anandapadmanaban, B.;Srinivasan, G.;Kapoor, R.P.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.520-525
    • /
    • 2003
  • Fast Breeder Test Reactor (FBTR) is a 40MW (thermal) / 13.2MW (electrical), Plutonium - Uranium mixed carbide fuelled, sodium cooled, loop type nuclear reactor operating at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam. Its main aim is to generate experience in operation of fast reactors and sodium systems and to serve as an irradiation facility for development of fuels and structural materials fur fast reactors. Nuclear reactors pose difficulties to the NDT techniques used to monitor the conditions of the internal components. Sodium cooled fast breeder reactors have their own typical difficulties in using the NDT techniques. These are due to the need for operation in aggressive environment of nuclear radiation and sodium (molten/vapour), as well as the need to maintain leak tightness of a very high order during all states of reactor operation and shutdown for fuel handling, maintenance and remote inspection. This paper discusses the following NDT techniques, which have been successfully used for the past 15 years in FBTR: (i) Periscope and Projector, (ii) Core Co-ordinate Measuring Device and, (iii) Optical fiberscope. The inspection using these techniques have given confidence for further reactor operation at high power by giving useful data on the conditions of the components inside the reactor vessel.

FAST REACTOR TECHNOLOGY R&D ACTIVITIES IN CHINA

  • Mi, Xu
    • Nuclear Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.187-192
    • /
    • 2007
  • The basic research on fast reactor technology was started in the mid-1960's in China. The emphasis was put on fast reactor neutronics, thermohydraulics, sodium technology, materials, fuels, safety, sodium devices and instrumentation. In 1987, the research turned to applied basic research with the conceptual design of a 60 MW experimental fast reactor as a target. The Project of the China Experimental Fast Reactor(CEFR) with a thermal power 65 MW was launched in 1993. The R&D of fast reactor technology then carried out to serve a design demonstration connected with the different phases of the conceptual, preliminary and detailed design of the CEFR. Recently, three directions of fast rector technology R&D activities have been considered, and some research programs have been developed. They are: (1) R&D related to the CEFR, i.e. experiments to be conducted on the CEFR for its safe operation, (2) R&D related to the projects of a prototype and the demonstration of fast reactors, and(3) advanced SFR technology within the framework of the international cooperation of INPRO and GIF.

ANALYSIS OF HIGH BURNUP PRESSURIZED WATER REACTOR FUEL USING URANIUM, PLUTONIUM, NEODYMIUM, AND CESIUM ISOTOPE CORRELATIONS WITH BURNUP

  • KIM, JUNG SUK;JEON, YOUNG SHIN;PARK, SOON DAL;HA, YEONG-KEONG;SONG, KYUSEOK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.924-933
    • /
    • 2015
  • The correlation of the isotopic composition of uranium, plutonium, neodymium, and cesium with the burnup for high burnup pressurized water reactor fuels irradiated in nuclear power reactors has been experimentally investigated. The total burnup was determined by Nd-148 and the fractional $^{235}U$ burnup was determined by U and Pu mass spectrometric methods. The isotopic compositions of U, Pu, Nd, and Cs after their separation from the irradiated fuel samples were measured using thermal ionization mass spectrometry. The contents of these elements in the irradiated fuel were determined through an isotope dilution mass spectrometric method using $^{233}U$, $^{242}Pu$, $^{150}Nd$, and $^{133}Cs$ as spikes. The activity ratios of Cs isotopes in the fuel samples were determined using gamma-ray spectrometry. The content of each element and its isotopic compositions in the irradiated fuel were expressed by their correlation with the total and fractional burnup, burnup parameters, and the isotopic compositions of different elements. The results obtained from the experimental methods were compared with those calculated using the ORIGEN-S code.

Comprehensive Vibration Assessment Program for Yonggwang Nuclear Power Plant Unit 4

  • Huinam Rhee;Hwang, Jong-Keun;Kim, Tae-Hyung;Kim, Jung-Kyu;Song, Heuy-Gap;Kim, Beom-Shig
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.1001-1007
    • /
    • 1995
  • A Comprehensive Vibration Assessment Program (CVAP) has been performed for Yonggwang Nuclear Power Plant Unit 4 (YGN 4) in order to verify the structural integrity of the reactor internals for flow induced vibrations prior to commercial operation. The theoretical evidence for the structural integrity of the reactor internals and the basis for measurement and inspection are provided by the analysis. Flow induced hydraulic loads and reactor internals vibration response data were measured during pre-core hot functional testing in YGN 4 site. Also, the critical areas in the reactor internals were inspected visually to check any existence of structural abnormality before and after the pre-core hot functional testing. Then, the measured data have been analyzed and compared with the predicted data by analysis. The measured stresses are less than the predicted values and the allowable limits. It is concluded that the vibration response of the reactor internals due to the flow induced vibration under normal operation is acceptable for long term operation.

  • PDF

Experimental measurement of stiffness coefficient of high-temperature graphite pebble fuel elements in helium at high temperatures

  • Minghao Si;Nan Gui;Yanfei Sun;Xingtuan Yang;Jiyuan Tu;Shengyao Jiang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1679-1686
    • /
    • 2024
  • Graphite material plays an important role in nuclear reactors especially the high-temperature gas-cooled reactors (HTGRs) by its outstanding comprehensive nuclear properties. The structural integrity of graphite pebble fuel elements is the first barrier to core safety under any circumstances. The correct knowledge of the stiffness coefficient of the graphite pebble fuel element inside the reactor's core is significant to ensure the valid design and inherent safety. In this research, a vertical extrusion device was set up to measure the stiffness coefficient of the graphite pebble fuel element by the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University in China. The stiffness coefficient equations of graphite pebble fuel elements at different temperatures are given (in a helium atmosphere). The result first provides the data on the high-temperature stiffness coefficient of pebbles in helium gas. The result will be helpful for the engineering safety analysis of pebble-bed nuclear reactors.

CFD Analysis for Simulating Very-High-Temperature Reactor by Designing Experimental Loop (초고온가스로 모사 실험회로 설계를 위한 전산유체역학 해석)

  • Yoon, Churl;Hong, Sung-Deok;Noh, Jae-Man;Kim, Yong-Wan;Chang, Jong-Hwa
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.553-561
    • /
    • 2010
  • A medium-scale helium loop that can simulate a VHTR (very-high-temperature reactor) is now under construction at the Korea Atomic Energy Research Institute. The heaters of the test helium loop electrically heat helium fluid up to $950^{\circ}C$ at pressures of 1 to 9 MPa. To optimize the design specifications of the experimental helium loop, the conjugate heat transfer in the high-temperature helium heater was analyzed by performing a CFD simulation. The analysis results indicate that the maximum temperature does not exceed the allowable limit. It is confirmed that the thermal characteristics of the loop with the given geometry satisfy the design requirements.

Development of Coolant Flow Simulation System for Nuclear Fuel Test Rigs (핵연료조사리그 냉각수 유동 모의장치 개발)

  • Hong, Jintae;Joung, Chang-Young;Heo, Sung-Ho;Kim, Ka-Hye
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.117-123
    • /
    • 2015
  • To remove heat generated during a burn-up test of nuclear fuels, the heat generation rate of nuclear fuels should be calculated accurately, and a coolant should be circulated in the test loop at an adequate flow rate. HANARO is an open pool-type reactor with an independent test loop for the burn-up test of nuclear fuels. A test rig is installed in the test loop, and a coolant is circulated through the test loop to maintain the temperature of the nuclear fuel rods within a desired temperature during an irradiation test. The components and sensors in the test rig can be broken or malfunction owing to the flow-induced vibration. In this study, a coolant flow simulation system was developed to verify and confirm the soundness of components and sensors assembled in the test rig with a high flow rate of the coolant.