• Title/Summary/Keyword: nuclear research reactor

Search Result 1,694, Processing Time 0.033 seconds

Process Suggestion and HAZOP Analysis for CQ4 and Q2O in Nuclear Fusion Exhaust Gas (핵융합 배가스 중 CQ4와 Q2O 처리공정 제안 및 HAZOP 분석)

  • Jung, Woo-Chan;Jung, Pil-Kap;Kim, Joung-Won;Moon, Hung-Man;Chang, Min-Ho;Yun, Sei-Hun;Woo, In-Sung
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.169-175
    • /
    • 2018
  • This study deals with a process for the recovery of hydrogen isotopes from methane ($CQ_4$) and water ($Q_2O$) containing tritium in the nuclear fusion exhaust gas (Q is Hydrogen, Deuterium, Tritium). Steam Methane Reforming and Water Gas Shift reactions are used to convert $CQ_4$ and $Q_2O$ to $Q_2$ and the produced $Q_2$ is recovered by the subsequent Pd membrane. In this study, one circulation loop consisting of catalytic reactor, Pd membrane, and circulation pump was applied to recover H components from $CH_4$ and $H_2O$, one of $CQ_4$ and $Q_2O$. The conversion of $CH_4$ and $H_2O$ was measured by varying the catalytic reaction temperature and the circulating flow rate. $CH_4$ conversion was 99% or more at the catalytic reaction temperature of $650^{\circ}C$ and the circulating flow rate of 2.0 L/min. $H_2O$ conversion was 96% or more at the catalytic reaction temperature of $375^{\circ}C$ and the circulating flow rate of 1.8 L/min. In addition, the amount of $CQ_4$ generated by Korean Demonstration Fusion Power Plant (K-DEMO) in the future was predicted. Then, the treatment process for the $CQ_4$ was proposed and HAZOP (hazard and operability) analysis was conducted to identify the risk factors and operation problems of the process.

A Preliminary Study on Measuring Void Fraction in a Fuel Rod Assembly by using an X-ray Imaging System (X선 영상 장치를 이용한 핵연료 집합체 내 기포율 측정을 위한 선행 연구)

  • Lee, Sun-Young;Oh, Oh-Sung;Lee, Se-Ho;Lee, Seung-Wook
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.571-578
    • /
    • 2017
  • Bubbles are generated by the boiling of the cooling water when an accident occurs in the reactor and then in order to measure the void fraction, the Optical Fiber Probe(OFP) and optical camera are used in thermal hydraulic safety research. However, such an optical method is not suitable for measuring the void fraction in a $17{\times}17$ array of fuel rods due to the geometrical limitations. This study was conducted as a preliminary study using x-ray system and various phantoms before applying to rod bundles. Through radiographic and tomographic experiments, the tube voltage of the x-ray generator was 130 kVp and the tube current was 1 mA. In addition, it is possible to measure the hole of 1mm in size visually through the bubble resolution phantom, and it is confirmed that the contrast is relatively decreased in the inside of the freon in the case of the contrast evaluation using the road phantom. However, we could obtain good image without distortion when reconstructing the image. Bubble generation phantom experiments were used to confirm the flow direction of the bubbles and to acquire tomography images. The image J tool was used to measure the void fraction of 18 % for a single tomography image. This study has carried out previous researches for the measurement of the bubble rate around the nuclear fuel and could be used as a basic research for continuous research.

A Study on Water Level Control of PWR Steam Generator at Low Power Operation and Transient States (저출력 및 과도상태시 원전 증기발생기 수위제어에 관한 연구)

  • Na, Nan-Ju;Kwon, Kee-Choon;Bien, Zeungnam
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.18-35
    • /
    • 1993
  • The water level control system of the steam generator in a pressurized water reactor and its control problems are analysed. In this work the stable control strategy during the low power operation and transient states is studied. To solve the problem, a fuzzy logic control method is applied as a basic algorithm of the controller. The control algorithm is based on the operator's knowledges and the experiences of manual operation for water level control at the compact nuclear simulator set up in Korea Atomic Energy Research Institute. From a viewpoint of the system realization, the control variables and rules are established considering simpler tuning and the input-output relation. The control strategy includes the dynamic tuning method and employs a substitutional information using the bypass valve opening instead of incorrectly measured signal at the low flow rate as the fuzzy variable of the flow rate during the pressure control mode of the steam generator. It also involves the switching algorithm between the control valves to suppress the perturbation of water level. The simulation results show that both of the fine control action at the small level error and the quick response at the large level error can be obtained and that the performance of the controller is improved.

  • PDF

Bayesian Network-based Probabilistic Safety Assessment for Multi-Hazard of Earthquake-Induced Fire and Explosion (베이지안 네트워크를 이용한 지진 유발 화재・폭발 복합재해 확률론적 안전성 평가)

  • Se-Hyeok Lee;Uichan Seok;Junho Song
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.3
    • /
    • pp.205-216
    • /
    • 2024
  • Recently, seismic Probabilistic Safety Assessment (PSA) methods have been developed for process plants, such as gas plants, oil refineries, and chemical plants. The framework originated from the PSA of nuclear power plants, which aims to assess the risk of reactor core damage. The original PSA method was modified to adopt the characteristics of a process plant whose purpose is continuous operation without shutdown. Therefore, a fault tree, whose top event is shut down, was constructed and transformed into a Bayesian Network (BN), a probabilistic graph model, for efficient risk-informed decision-making. In this research, the fault tree-based BN from the previous research is further developed to consider the multi-hazard of earthquake-induced fire and explosion (EQ-induced F&E). For this purpose, an event tree describing the occurrence of fire and explosion from a release is first constructed and transformed into a BN. And then, this BN is connected to the previous BN model developed for seismic PSA. A virtual plot plan of a gas plant is introduced as a basis for the construction of the specific EQ-induced F&E BN to test the proposed BN framework. The paper demonstrates the method through two examples of risk-informed decision-making. In particular, the second example verifies how the proposed method can establish a repair and retrofit strategy when a shutdown occurs in a process plant.

An Assessment on the Contribution of $^3$He to the Tritium Generation in the CANDU PHWR (가압중수로에서 헬륨-3이 삼중수소의 생성에 미치는 영향평가)

  • Kwak, Sung-Woo;Chung, Bum-Jin
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.2
    • /
    • pp.119-125
    • /
    • 1997
  • PHWR achieves high neutron economy by adopting heavy water as its moderator and coolant. On the other hand it permits much tritium generation, compared to LWR, due to the neutron capture reaction of deuterium in heavy water. Meanwhile in the reactor core, $^3He formed as the result of-decay of tritium, captures a thermal neutron and transforms to tritium again. The existing calculation models on tritium generation in PHWR neglect the contribution of $^3He$ in both moderator and coolant due to its relatively low solubility. However the neutron capture cross-section of $^3He$ is almost $1.6{\times}10^7$ times as large as that of deuterium. That means that the dissolved amount of 0.03 ppm of $^3He$ in heavy water is enough to generate the same amount of tritium as that generated by the deuterium of total heavy water in the system. This study dealt with the contribution of $^3He$ to tritium generation. As a sample case, the contribution of $^3He$ to the tritium generation in Wolsong #1 was evaluated and compared to the measured values. According to the result of this study, it is concluded that $^3He$ in coolant contributes very much to the tritium generation but that in moderator shows negligible effects due to the low solubility and $^4He$ cover gas. At the beginning of the plant operation, the contribution of $^3He$ is slightly greater than the measured value but agrees well with the measured as the operating time increases.

  • PDF

Preliminary Analysis of the Thermal-Hydraulic Performance of a Passive Containment Cooling System using the MARS-KS1.3 Code (MARS-KS1.3을 이용한 피동원자로건물냉각계통 열수력 성능 예비분석)

  • Bae, Sung Hwan;Ha, Tae Wook;Jeong, Jae Jun;Yun, Byong Jo;Jerng, Dong Wook;Kim, Han Gon
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.96-108
    • /
    • 2015
  • A passive containment cooling system has been designed to remove the heat inside a containment during accidents without external power supply. In this work, the PCCS was introduced in the APR1400 plant to replace the containment spray system and, then, the thermal-hydraulic performance of the PCCS was analyzed using the system thermal-hydraulic computer code, MARS. A double-ended cold-leg break accident, which is known to induce the maximum pressure in the containment, is simulated, where the thermal hydraulics of the PCCS, the reactor coolant system, and the containment are simultaneously simulated. The results of the calculations showed that the PCCS can replace the existing spray system and that the containment building and its internal structure also play a very important role for the heat removal during the accident. Some sensitivity calculations were carried out to evaluate the model uncertainty and the effects of design parameters. The limitations of the PCCS are also discussed.

Design of a Neural Network PI Controller for F/M of Heavy Water Reactor Actuator Pressure (신경회로망과 PI제어기를 이용한 중수로 핵연료 교체 로봇의 구동압력 제어)

  • Lim, Dae-Yeong;Lee, Chang-Goo;Kim, Young-Baik;Kim, Young-Chul;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1255-1262
    • /
    • 2012
  • Look into the nuclear power plant of Wolsong currently, it is controlled in order to required operating pressure with PI controller. PI controller has a simple structure and satisfy design requirements to gain setting. However, It is difficult to control without changing the gain from produce changes in parameters such as loss of the valves and the pipes. To solve these problems, the dynamic change of the PI controller gain, or to compensate for the PI controller output is desirable to configure the controller. The aim of this research and development in the parameter variations can be controlled to a stable controller design which is reduced an error and a vibration. Proposed PI/NN control techniques is the PI controller and the neural network controller that combines a parallel and the neural network controller part is compensated output of the controller for changes in the parameters were designed to be robust. To directly evaluate the controller performance can be difficult to test in real processes to reflect the characteristics of the process. Therefore, we develope the simulator model using the real process data and simulation results when compared with the simulated process characteristics that showed changes in the parameters. As a result the PI/NN controller error and was confirmed to reduce vibrations.

Determination of Exposure Dose Rate and Isotropic Distributions of Substitute High Dose Rate Ir-192 Source for Co-60 Brachytherapy Source (원격강내조사용 Co-60 선원의 대체용 Ir-192 선원의 조사선량결정 및 선량 등방성조사)

  • 최태진;원철호;김옥배;김시운;김금배;조운갑;한현수;박경배
    • Progress in Medical Physics
    • /
    • v.9 no.1
    • /
    • pp.55-64
    • /
    • 1998
  • In recent, the demand of development of the high dose rate brachytherapy source increased for substitute for Co-60 source by iridium source, since the supplying Co-60 source is very depressed and the high dose rate brachytherapy sources are entirely imported from the abroad. This study investigated the exposure rates and isotropic dose distributions for the Ir-192 source produced from $\^$191/Ir(n,r)$\^$192/Ir by nuclear reactor in Korea Atomic Energy Research Institute. The activity of source was obtained an 1.012 Ci (the initial activity without encapsulation was 2,87Ci) by measurement with encapsuled stainless steel. The exposure rate of provided Ir-192 source was determined on 6.36 ${\pm}$ 0.147 Rm$^2$/h-GBq (2.350 ${\pm}$ 0.054 Rcm$^2$/mCi-hr) within ${\pm}$ 2.2% discrepancy with IC-10 ion chamber (0.14 cc) which was mounted on the acrylic jig to 5, 10 and 20 cm from the center of source. The calculated doses with 22 most significant spectrum lines were corrected with intrinsic efficiency of the germanium detector were compared to measured exposure dose rates within ${\pm}$3.8 % discrepancy. The authors confirmed the high dose rate Ir-192 source could be replaced the long decayed Co-60 source via investigation of the isotropic dose distributions in lateral, source axis and diagonal direction of source center are very closed to within 3% uncertainties. Especially, this exposure rate constant and isotropic dose distribution will be fundamental to build the high dose rate source and develop the computed therapy planning system.

  • PDF

A Study on the Dose Constraints for Occupational Exposure: Focusing on Expert Opinions by Field of Ridiation Industry (직무피폭의 선량제약치에 관한 연구: 분야별 전문가 의견 중심으로)

  • Il Park;Chan Hee Park;Kyu Hwan Jung;Chan Ho Park;Yong Geon Kim;Tae Jin Park
    • Journal of Radiation Industry
    • /
    • v.17 no.1
    • /
    • pp.61-67
    • /
    • 2023
  • A Study on the Introduction of Dose Constraints for Occupational Exposures: Focusing on Experts' Opinions by Field of Radiation Industry. The International Commission on Radiological Protection suggests Justification, Optimization, and Dose Limits as the three principles of radiological protection, among which, as a means of protection optimization, ICRP 103 recommends to set dose constraints. In this study, opinions are collected from experts in each category of radiation industries for stakeholder participation to qualify dose constraints. A guidance and questionnaire for analyzing the dose constraints have been developed for their collection, and opinions were collected from radiation protection experts in selected categories. 20 out of 22 experts, consisted with 91%, have assessed the dose constraints setting is necessary, and 2 experts, consisted with 9%, assessed it is unnecessary. The average of dose constraint presented by experts for RI production institutions is to be the highest level of 15.3 mSv, and light-water reactors (14.6 mSv), non-destructive inspection (14.4 mSv), heavy-water reactor and medical institutes (13.9mSv) is to be above the overall average dose constraint. In case of public institutions, the average dose constraint is to be 8.6mSv, and research institutions (8.8mSv), educational institutions (9.6 mSv), waste disposal sites (9.7 mSv), and general industries (10.6 mSv) are resulted to below the overall average dose constraint. As for the means of setting dose constraints, 8 experts out of 22 suggested setting dose constraints for each specific industry or task. And, 5 experts especially suggest setting dose constraints for the specific groups with relatively high exposure, such as workers with above the record levels. As a countermeasure for workers who exceed the dose constraints, 15 experts out of 22 expressed that the cause analyses for them and preparation for a plan of reducing them are necessary.

A Study on the Recovery of Radiation Hardening of PWR Pessure Vessel Steel Using Michrohardness and Positron Annihilation (미세경도와 양전자 소멸을 이용한 PWR 압력용기강의 조사 경화 회복에 관한 연구)

  • Garl, Seong-Je;Yoon, Young-Ku;Park, Soon-Pil;Park, Yong-Ki
    • Nuclear Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.337-350
    • /
    • 1990
  • A post-irradiation annealing study was conducted with use of reactor pressure vessel(RPV) steel A533B Cl.1 base metal irradiated to a dose of 4.84$\times$10$^{18}$ n/$\textrm{cm}^2$ at about 38$0^{\circ}C$. Microhardness and positron annihilation (PA) methods were used to obtain better understanding of the recovery of radiation hardening. Isochronal anneal experiments indicated that two recovery processes occur during annealing of irradiated specimens. The first recovery process occurs in the temperature range of 280-3O5$^{\circ}C$, Michrohardness and positron annihilation (PA) methods were used to obtain better understanding of the recovery of radiation hardening. Isochronal anneal experiments indicated that two recovery processes occur during annealing of irradiated specimens. The first recovery process occurrs in the temperature range of 280-305$^{\circ}C$. The variations of Ip, Iw and R parameters indicated that the formation of vacancy clusters by vacancy agglomeration and the annihilation of monovacancies are the first recovery process. The second recovery process occurs in the range of 405-49$0^{\circ}C$ and positron annihilation parameters measured indicated that the dissolution of carbon atoms decorated around vacancy-type defects and possible precipitates, and the annihilation of monovacancies give rise to the second recovery process. It was further indicated that radiation anneal hardening (RAH) in the range of 305-405$^{\circ}C$ between the temperature ranges for the two processes occurs due to the formation of carbon-decorated vacancy clusters and precipitates. The activation energies, orders of reaction and other characteristics of recovery processes were determined by the Meechan-Brinkman method. The activation energy for the first recovery process was determined as 1.76 eV and that for the second recovery process as 2.00eV. These values are lower than those obtained by other workers. This difference may be attributed to the lower copper content of the RPV steel used in the present study. The order of reaction for the first recovery process was determined as 1.78, while that for the second recovery process as 1.67 Non-integer orders of reaction for recovery processes seem to be attributed to the fact that several mechanisms for the first order and the second order of reaction are compounded in one process. This result also supports for the above conclusions from measurements of PA parameters.

  • PDF