• 제목/요약/키워드: nuclear research reactor

검색결과 1,721건 처리시간 0.025초

STATUS OF FACILITIES AND EXPERIENCE FOR IRRADIATION OF LWR AND V/HTR FUEL IN THE HFR PETTEN

  • Bakker Klaas;Klaassen Frodo;Schram Ronald;Futterer Michael
    • Nuclear Engineering and Technology
    • /
    • 제38권5호
    • /
    • pp.417-422
    • /
    • 2006
  • The present paper describes the 45 MW High Flux Reactor (HFR) which is located in Petten, The Netherlands. This paper focuses on selected technical aspects of this reactor and on nuclear fuel irradiation experiments. These fuel experiments are mainly experiments on Light Water Reactor (LWR) and Very/High Temperature Reactor (V/HTR) fuels, but also on Fast Reactor (FR) fuels, transmutation fuels and Material Test Reactor (MTR) fuels.

Design, construction, and characterization of a Prompt Gamma Neutron Activation Analysis (PGNAA) system at Isfahan MNSR

  • M.H. Choopan Dastjerdi;J. Mokhtari;M. Toghyani
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4329-4334
    • /
    • 2023
  • In this research, a prompt gamma neutron activation analysis (PGNAA) system is designed and constructed based on the use of a low power research reactor. For this purpose, despite the fact that this reactor did not include beam tubes, a thermal neutron beam line is installed inside the reactor tank. The extraction of the beam line from inside the tank made it possible to provide the neutron flux from the order of 106 n.cm-2.s-1. Also, because the beam line is installed in a tangential position to the reactor core, its gamma level has been minimized. Also, a suitable radiation shield is considered for the detector to minimize the background radiation and prevent radiation damage to the detector. Calculations and measurements are done in order to characterize this system, as well as spectrometry of several samples. The results of evaluations and experiments show that this system is suitable for performing PGNAA.

Safety Classification of Systems, Structures, and Components for Pool-Type Research Reactors

  • Kim, Tae-Ryong
    • Nuclear Engineering and Technology
    • /
    • 제48권4호
    • /
    • pp.1015-1021
    • /
    • 2016
  • Structures, systems, and components (SSCs) important to safety of nuclear facilities shall be designed, fabricated, erected, and tested to quality standards commensurate with the importance of the safety functions. Although SSC classification guidelines for nuclear power plants have been well established and applied, those for research reactors have been only recently established by the International Atomic Energy Agency (IAEA). Korea has operated a pool-type research reactor (the High Flux Advanced Neutron Application Reactor) and has recently exported another pool-type reactor (Jordan Research and Training Reactor), which is being built in Jordan. Korea also has a plan to build one more pool-type reactor, the Kijang Research Reactor, in Kijang, Busan. The safety classification of SSCs for pool-type research reactors is proposed in this paper based on the IAEA methodology. The proposal recommends that the SSCs of pool-type research reactors be categorized and classified on basis of their safety functions and safety significance. Because the SSCs in pool-type research reactors are not the pressure-retaining components, codes and standards for design of the SSCs following the safety classification can be selected in a graded approach.

Measurement of safety rods reactivity worth by advanced source jerk method in HWZPR

  • Nasrazadani, Z.;Ahmadi, A.;Khorsandi, J.
    • Nuclear Engineering and Technology
    • /
    • 제51권4호
    • /
    • pp.963-967
    • /
    • 2019
  • Accurate measurement of the reactivity worth of safety rods is very important for the safe reactor operation, in normal and emergency conditions. In this paper, the reactivity worth of safety rods in Heavy Water Zero Power Reactor (HWZPR) in the new lattice pitch is measured by advanced source jerk method. The average of the results related to two different detectors is equal to 29.88 mk. In order to verify the result, this parameter was compared to the previously measured value by subcritical to critical approach. Different experiment results are finally compared with corresponding calculated result. Difference between the average experimental and calculated results is equal to 2.2%.

Investigating Heavy Water Zero Power Reactors with a New Core Configuration Based on Experiment and Calculation Results

  • Nasrazadani, Zahra;Salimi, Raana;Askari, Afrooz;Khorsandi, Jamshid;Mirvakili, Mohammad;Mashayekh, Mohammad
    • Nuclear Engineering and Technology
    • /
    • 제49권1호
    • /
    • pp.1-5
    • /
    • 2017
  • The heavy water zero power reactor (HWZPR), which is a critical assembly with a maximum power of 100 W, can be used in different lattice pitches. The last change of core configuration was from a lattice pitch of 18-20 cm. Based on regulations, prior to the first operation of the reactor, a new core was simulated with MCNP (Monte Carlo N-Particle)-4C and WIMS (Winfrith Improved Multigroup Scheme)-CITATON codes. To investigate the criticality of this core, the effective multiplication factor ($K_{eff}$) versus heavy water level, and the critical water level were calculated. Then, for safety considerations, the reactivity worth of $D_2O$, the reactivity worth of safety and control rods, and temperature reactivity coefficients for the fuel and the moderator, were calculated. The results show that the relevant criteria in the safety analysis report were satisfied in the new core. Therefore, with the permission of the reactor safety committee, the first criticality operation was conducted, and important physical parameters were measured experimentally. The results were compared with the corresponding values in the original core.

Neutronic analysis of control rod effect on safety parameters in Tehran Research Reactor

  • Torabi, Mina;Lashkari, A.;Masoudi, Seyed Farhad;Bagheri, Somayeh
    • Nuclear Engineering and Technology
    • /
    • 제50권7호
    • /
    • pp.1017-1023
    • /
    • 2018
  • The measurement and calculation of neutronic parameters in nuclear research reactors has an important influence on control and safety of the nuclear reactor. The power peaking factors, reactivity coefficients and kinetic parameters are the most important neutronic parameter for determining the state of the reactor. The position of the control shim safety rods in the core configuration affects these parameters. The main purpose of this work is to use the MTR_PC package to evaluate the effect of the partially insertion of the control rod on the neutronic parameters at the operating core of the Tehran Research Reactor. The simulation results show that by increasing the insertion of control rods (bank) in the core, the absolute values of power peaking factor, reactivity coefficients and effective delayed neutron fraction increased and only prompt neutron life time decreased. In addition, the results show that the changes of moderator temperature coefficients value versus the control rods positions are very significant. The average value of moderator temperature coefficients increase about 98% in the range of 0-70% insertion of control rods.

Study on an open fuel cycle of IVG.1M research reactor operating with LEU-fuel

  • Ruslan А. Irkimbekov ;Artur S. Surayev ;Galina А. Vityuk ;Olzhas M. Zhanbolatov ;Zamanbek B. Kozhabaev;Sergey V. Bedenko ;Nima Ghal-Eh ;Alexander D. Vurim
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1439-1447
    • /
    • 2023
  • The fuel cycle characteristics of the IVG.1M reactor were studied within the framework of the research reactor conversion program to modernize the IVG.1M reactor. Optimum use of the nuclear fuel and reactor was achieved through routine methods which included partial fuel reloading combined with scheduled maintenance operations. Since, the additional problem in planning the fuel cycle of the IVG.1M reactor was the poisoning of the beryllium parts of the core, reflector, and control system. An assessment of the residual power and composition of spent fuel is necessary for the selection and justification of the technology for its subsequent management. Computational studies were performed using the MCNP6.1 program and the neutronics model of the IVG.1M reactor. The proposed scheme of annual partial fuel reloading allows for maintaining a high reactor reactivity margin, stabilizing it within 2-4 βeff for 20 years, and achieving a burnup of 9.9-10.8 MW × day/kg U in the steady state mode of fuel reloading. Spent fuel immediately after unloading from the reactor can be placed in a transport packaging cask for shipping or safely stored in dry storage at the research reactor site.

Analyzing local perceptions toward the new nuclear research reactor in Thailand

  • Tantitaechochart, Sarasinee;Paoprasert, Naraphorn;Silva, Kampanart
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2958-2968
    • /
    • 2020
  • Understanding public perception on nuclear research reactor is necessary for the policy maker to adopt such technology in Thailand, especially the locals who live in the proposed location. The study compared perceptions between the locals living near the proposed nuclear research reactor location (within 5 km) and those living in the outer region (5-15 km). Structural equation modeling technique was adopted by assuming casual relationships between latent variables including social status, information perception, trust, benefit perception and risk perception on the local acceptance of research reactor. The results showed that the strongest relationships for both the inner and the outer perimeters were from information perception toward technology acceptance via trust and benefit perception. While both zones showed similar results, the outer perimeter seemed to show slightly stronger effects than those in the inner perimeter.

Conceptual design of a MW heat pipe reactor

  • Yunqin Wu;Youqi Zheng;Qichang Chen;Jinming Li;Xianan Du;Yongping Wang;Yushan Tao
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.1116-1123
    • /
    • 2024
  • -In recent years, unmanned underwater vehicles (UUV) have been vigorously developed, and with the continuous deepening of marine exploration, traditional energy can no longer meet the energy supply. Nuclear energy can achieve a huge and sustainable energy supply. The heat pipe reactor has no flow system and related auxiliary systems, and the supporting mechanical moving parts are greatly reduced, the noise is relatively small, and the system is simpler and more reliable. It is more favorable for the control of unmanned systems. The use of heat pipe reactors in unmanned underwater vehicles can meet the needs for highly compact, long-life, unmanned, highly reliable, ultra-quiet power supplies. In this paper, a heat pipe reactor scheme named UPR-S that can be applied to unmanned underwater vehicles is designed. The reactor core can provide 1 MW of thermal power, and it can operate at full power for 5 years. UPR-S has negative reactive feedback, it has inherent safety. The temperature and stress of the reactor are within the limits of the material, and the core safety can still be guaranteed when the two heat pipes are failed.

NEUTRONICS INVESTIGATION OF CANADA DEUTERIUM URANIUM 6 REACTOR FUELED (TRANSURANICeTH) O2 USING A COMPUTATIONAL METHOD

  • GHOLAMZADEH, ZOHREH;MIRVAKILI, SEYED MOHAMMAD;KHALAFI, HOSSEIN
    • Nuclear Engineering and Technology
    • /
    • 제47권1호
    • /
    • pp.85-93
    • /
    • 2015
  • Background: $^{241}Am$, $^{243}Am$, and $^{237}Np$ isotopes are among the most radiotoxic components of spent nuclear fuel. Recently, researchers have planned different incineration scenarios for the highly radiotoxic elements of nuclear waste in critical reactors. Computational methods are widely used to predict burnup rates of such nuclear wastes that are used under fuel matrixes in critical reactors. Methods: In this work, the Monte Carlo N-particle transport code was used to calculate the neutronic behavior of a transuranic (TRU)-bearing CANada Deuterium Uranium 6 reactor. Results: The computational data showed that the 1.0% TRU-containing thorium-based fuel matrix presents higher proliferation resistance and TRU depletion rate than the other investigated fuel Matrixes. The fuel matrix includes higher negative temperature reactivity coefficients as well. Conclusion: The investigated thorium-based fuel matrix can be successfully used to decrease the production of highly radiotoxic isotopes.