• Title/Summary/Keyword: nuclear reactor vessel

Search Result 488, Processing Time 0.029 seconds

Analysis on the discharge characteristics and spreading behavior of an ex-vessel core melt in the SMART

  • Sang Ho Kim;Jaehyun Ham;Byeonghee Lee;Sung Il Kim;Hwan Yeol Kim;Rae-Joon Park;Jaehoon Jung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4551-4559
    • /
    • 2022
  • The aim of this research is to analyze the characteristics of a core melt discharged from the reactor vessel and the spreading behavior the core melt in the reactor cavity of the SMART. First, a severe accident sequence under conservative conditions is simulated by the MELCOR code to obtain the conditions for an analysis of the spreading behavior and coolability of the ex-vessel melt. Second, the spreading behavior and coolability of the ex-vessel melt are analyzed by the MELTSPREAD code. The level, temperature, and pressure of the water in the cavity as well as the temperature, mass, composition, and discharge velocity of the melt were utilized to construct the ex-vessel analysis. The melt spread only to part of the cavity, and that the height of the corium in a static state was less than 25 cm. The characteristics of a small modular reactor on the spreading behavior and coolability of melt were analyzed. In the SMART, the amount of melt discharged into the cavity is relatively small and the area of the cavity is sufficiently large when compared to a high-power pressurized water reactor. It was found that the coolability of an ex-vessel core melt can be sufficiently secured.

Design Verification of APR1400 Reactor Vessel Through Re-engineering Approach

  • Mutembei, Mutegi Peter;Namgung, Ihn
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.13 no.1
    • /
    • pp.15-23
    • /
    • 2017
  • This paper describes verification of APR1400 reactor vessel by applying the system engineering approach, in which the design re-engineering method is used to check the design parameters of APR1400 RV (reactor vessel). The RV is classified as safety class 1 and therefore must adhere strictly to the rules of ASME BPVC section III, subsection NB and seismic category I. This study explores designing the RV by following the ASME guidelines and making a comparative study with the current design. To meet this objective we apply system engineering methodologies to structure the process and allow for verification and validation of the major RV design parameters such as thickness of RV. The structural thicknesses of various part of RV are determined as well as reinforcements on the RV major nozzles. A 3D virtual reality model was created based on the design parameters using CATIA V5 and animation using Dassault Composer V2016. A comparison of re-engineered ARP1400 RV and standard APR1400 RV was done to show which design parameters were taken more conservative approach.

Constraint-corrected fracture mechanics analysis of nozzle crotch corners in pressurized water reactors

  • Kim, Jong-Sung;Seo, Jun-Min;Kang, Ju-Yeon;Jang, Youn-Young;Lee, Yun-Joo;Kim, Kyu-Wan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1726-1746
    • /
    • 2022
  • This paper presents fracture mechanics analysis results for various cracks located at pressurized water reactor pressure vessel nozzle crotch corners taking into consideration constraint effect. Technical documents such as the ASME B&PV Code, Sec.XI were reviewed and then a fracture mechanics analysis procedure was proposed for structural integrity assessment of various nozzle crotch corner cracks under normal operation conditions considering the constraint effect. Linear elastic fracture mechanics analysis was performed by conducting finite element analysis with the proposed analysis procedure. Based on the evaluation results, elastic-plastic fracture mechanics analysis taking into account the constraint effect was performed only for the axial surface crack of the reactor pressure vessel outlet nozzle with cladding. The fracture mechanics analysis result shows that only the axial surface crack in the reactor pressure vessel outlet nozzle has the stress intensity factor exceeding the low bound of upper-shelf fracture toughness irrespectively of considering the constraint effect. It is confirmed that the J-integral for the axial crack of the outlet nozzle does not exceed the ductile crack initiation toughness. Hence, it can be ensured that the structural integrity of all the cracks is maintained during the normal operation.

Selection of Measuring Sensors for Reactor Vessel Internals Comprehensive Vibration Assessment Program in Advanced Power Reactor 1400 (APR1400 원자로 내부구조물 종합진동평가 측정센서 선정)

  • Ko, Do-Young;Lee, Jae-Gon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.433-438
    • /
    • 2010
  • Reactor vessel internals comprehensive vibration assessment program(RVI CVAP) is one of the necessary tests to ensure the safety of nuclear power plants. RVI CVAP of U.S. Nuclear Regulatory Commission Regulatory Guide 1.20(U.S. NRC R.G. 1.20) consists of the analysis, measurement, and inspection. One of the core technologies of the measurement program for RVI CVAP is to select suitable sensors. We analyzed RVI design data of Palo Verde nuclear generating station(U.S.) and Yonggwang nuclear generating station(Korea) and investigated measuring sensors used in both of them; moreover, we investigated sensors used for measurement of RVI CVAP for the last 20 years throughout the world. Based on these results, we selected the most suitable sensors for RVI CVAP in Advanced Power Reactor 1400(APR1400).

  • PDF

Ultrasonic Phased Array Techniques for Detection of Flaws of Stud Bolts in Nuclear Power Plants

  • Lee, Joon-Hyun;Choi, Sang-Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.6
    • /
    • pp.440-446
    • /
    • 2006
  • The reactor vessel body and closure head are fastened with the stud bolt that is one of crucial parts for safety of the reactor vessels in nuclear power plants. It is reported that the stud bolt is often experienced by fatigue cracks initiated at threads. Stud bolts are inspected by the ultrasonic technique during the overhaul periodically for the prevention of failure which leads to radioactive leakage from the nuclear reactor. The conventional ultrasonic inspection for stud bolts was mainly conducted by reflected echo method based on shadow effect. However, in this technique, there were numerous spurious signals reflected from every oblique surfaces of the thread. In this study, ultrasonic phased array technique was applied to investigate detectability of flaws in stud bolts and characteristics of ultrasonic images corresponding to different scanning methods, that is, sector and linear scan. For this purpose, simplified stud bolt specimens with artificial defects of various depths were prepared.

Investigating the Fluence Reduction Option for Reactor Pressure Vessel Lifetime Extension

  • Kim, Jong-Kyung;Shin, Chang-Ho;Seo, Bo-Kyun;Kim, Myung-Hyun;Kim, Dong-Kyu;Lee, Goung-Jin;Oh, Su-Jin
    • Nuclear Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.408-422
    • /
    • 1999
  • To reduce the fast neutron fluence which deteriorates the RPV integrity, additional shields were assumed to be installed at the outer core structures of the Kori Unit 1 reactor, and its reduction effects were examined. Full scope Monte Carlo simulation with MCNP4A code was made to estimate the fast neutron fluence at the RPV. An optimized design option was found from various choices in geometry and material for shield structure. It was expected that magnitude of fast neutron fluence would be reduced by 39% at the circumferential weld of the RPV, resulting in extension of plant lifetime by 4.6 EFPYs based on the criterion of PTS requirement It was investigated that the nuclear characteristics and thermal hydraulic factors at the internal core were only negligibly influenced by the installation of additional shield structure.

  • PDF

Comparison of vessel failure probabilities during PTS for Korean nuclear power plants

  • Jhung, M.J.;Choi, Y.H.;Chang, Y.S.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.3
    • /
    • pp.257-265
    • /
    • 2011
  • Plant-specific analyses of 5 types of domestic reactors in Korea are performed to assure the structural integrity of the reactor pressure vessel (RPV) during transients which are expected to initiate pressurized thermal shock (PTS) events. The failure probability of the RPV due to PTS is obtained by performing probabilistic fracture mechanics analysis. The through-wall cracking frequency is calculated and compared to the acceptance criterion. Considering the fluence at the end of life expected by surveillance test, the sufficient safety margin is expected for the structural integrity of all reactor pressure vessels except for the oldest one during the pressurized thermal shock events. If the flaw with aspect ratio of 1/12 is considered to eliminate the conservatism, the acceptance criteria is not exceeded for all plants until the fluence level of $8{\times}10^{19}\;n/cm^2$, generating sufficient margin beyond the design life.

FATIGUE ANALYSIS OF A REACTOR PRESSURE VESSEL FOR SMART

  • Jhung, Myung-Jo
    • Nuclear Engineering and Technology
    • /
    • v.44 no.6
    • /
    • pp.683-688
    • /
    • 2012
  • The structural integrity of mechanical components during several transients should be assured in the design stage. This requires a fatigue analysis including thermal and stress analyses. As an example, this study performs a fatigue analysis of the reactor pressure vessel of SMART during arbitrary transients. Using heat transfer coefficients determined based on the operating environments, a transient thermal analysis is performed and the results are applied to a finite element model along with the pressure to calculate the stresses. The total stress intensity range and cumulative fatigue usage factor are investigated to determine the adequacy of the design.

Vibration and Stress Analysis for Reactor Vessel Internals of Advanced Power Reactor 1400 due to Pulsation of Reactor Coolant Pump (원자로냉각재펌프 맥동에 대한 APR1400 원자로내부구조물의 진동 및 응력 해석)

  • Kim, Kyu-Hyung;Ko, Do-Young;Kim, Sung-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.221-226
    • /
    • 2011
  • The structural integrity of APR1400 reactor vessel internals has been being assessed referring the US Nuclear Regulatory Commission regulatory guide 1.20 comprehensive vibration assessment program. The program is composed of a vibration and stress analysis, a limited vibration measurement, and an inspection. This paper covers the vibration and stress analysis on the reactor vessel internals due to the pulsation of reactor coolant pump. 3-dimensional models to calculate the hydraulic loads and structural responses were built and the pressure distributions and the structural responses were predicted using ANSYS. The peak stress of the reactor vessel internals is much lower than the acceptance limit.

  • PDF

Ex-vessel Steam Explosion Analysis for Pressurized Water Reactor and Boiling Water Reactor

  • Leskovar, Matjaz;Ursic, Mitja
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.72-86
    • /
    • 2016
  • A steam explosion may occur during a severe accident, when the molten core comes into contact with water. The pressurized water reactor and boiling water reactor ex-vessel steam explosion study, which was carried out with the multicomponent three-dimensional Eulerian fuel-coolant interaction code under the conditions of the Organisation for Economic Co-operation and Development (OECD) Steam Explosion Resolution for Nuclear Applications project reactor exercise, is presented and discussed. In reactor calculations, the largest uncertainties in the prediction of the steam explosion strength are expected to be caused by the large uncertainties related to the jet breakup. To obtain some insight into these uncertainties, premixing simulations were performed with both available jet breakup models, i.e., the global and the local models. The simulations revealed that weaker explosions are predicted by the local model, compared to the global model, due to the predicted smaller melt droplet size, resulting in increased melt solidification and increased void buildup, both reducing the explosion strength. Despite the lower active melt mass predicted for the pressurized water reactor case, pressure loads at the cavity walls are typically higher than that for the boiling water reactor case. This is because of the significantly larger boiling water reactor cavity, where the explosion pressure wave originating from the premixture in the center of the cavity has already been significantly weakened on reaching the distant cavity wall.