• Title/Summary/Keyword: nuclear reactor vessel

Search Result 498, Processing Time 0.03 seconds

Computational Study of the Mixed Cooling Effects on the In-Vessel Retention of a Molten Pool in a Nuclear Reactor

  • Kim, Byung-Seok;Ahn, Kwang-Il;Sohn, Chang-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.990-1001
    • /
    • 2004
  • The retention of a molten pool vessel cooled by internal vessel reflooding and/or external vessel reactor cavity flooding has been considered as one of severe accident management strategies. The present numerical study investigates the effect of both internal and external vessel mixed cooling on an internally heated molten pool. The molten pool is confined in a hemispherical vessel with reference to the thermal behavior of the vessel wall. In this study, our numerical model used a scaled-down reactor vessel of a KSNP (Korea Standard Nuclear Power) reactor design of 1000 MWe (a Pressurized Water Reactor with a large and dry containment). Well-known temperature-dependent boiling heat transfer curves are applied to the internal and external vessel cooling boundaries. Radiative heat transfer has been considered in the case of dry internal vessel boundary condition. Computational results show that the external cooling vessel boundary conditions have better effectiveness than internal vessel cooling in the retention of the melt pool vessel failure.

DETAILED EVALUATION OF THE IN-VESSEL SEVERE ACCIDENT MANAGEMENT STRATEGY FOR SBLOCA USING SCDAP/RELAP5

  • Park, Rae-Joon;Hong, Seong-Wan;Kim, Sang-Baik;Kim, hee-Dong
    • Nuclear Engineering and Technology
    • /
    • v.41 no.7
    • /
    • pp.921-928
    • /
    • 2009
  • As part of an evaluation for an in-vessel severe accident management strategy, a coolant injection into the reactor vessel under depressurization of the reactor coolant system (RCS) has been evaluated in detail using the SCDAP/RELAP5 computer code. A high-pressure sequence of a small break loss of coolant accident (SBLOCA) has been analyzed in the Optimized Power Reactor (OPR) 1000. The SCDAP/RELAP5 results have shown that safety injection timing and capacity with RCS depressurization timing and capacity are very effective on the reactor vessel failure during a severe accident. Only one train operation of the high pressure safety injection (HPSI) for 30,000 seconds with RCS depressurization prevents failure of the reactor vessel. In this case, the operation of only the low pressure safety injection (LPSI) without a HPSI does not prevent failure of the reactor vessel.

Structural assessment of reactor pressure vessel under multi-layered corium formation conditions

  • Kim, Tae Hyun;Kim, Seung Hyun;Chang, Yoon-Suk
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.351-361
    • /
    • 2015
  • External reactor vessel cooling (ERVC) for in-vessel retention (IVR) has been considered one of the most useful strategies to mitigate severe accidents. However, reliability of this common idea is weakened because many studies were focused on critical heat flux whereas there were diverse uncertainties in structural behaviors as well as thermal-hydraulic phenomena. In the present study, several key factors related to molten corium behaviors and thermal characteristics were examined under multi-layered corium formation conditions. Thereafter, systematic finite element analyses and subsequent damage evaluation with varying parameters were performed on a representative reactor pressure vessel (RPV) to figure out the possibility of high temperature induced failures. From the sensitivity analyses, it was proven that the reactor cavity should be flooded up to the top of the metal layer at least for successful accomplishment of the IVR-ERVC strategy. The thermal flux due to corium formation and the relocation time were also identified as crucial parameters. Moreover, three-layered corium formation conditions led to higher maximum von Mises stress values and consequently shorter creep rupture times as well as higher damage factors of the RPV than those obtained from two-layered conditions.

Numerical Simulation on the ULPU-V Experiments using RPI Model (RPI모형을 이용한 ULPU-V시험의 수치모사)

  • Suh, Jungsoo;Ha, Huiun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.147-152
    • /
    • 2017
  • The external reactor vessel cooling (ERVC) is well known strategy to mitigate a severe accident at which nuclear fuel inside the reactor vessel is molten. In order to compare the heat removal capacity of ERVC between the nuclear reactor designs quantitatively, numerical method is often used. However, the study for ERVC using computational fluid dynamics (CFD) is still quite scarce. As a validation study on the numerical prediction for ERVC using CFD, the subcooled boiling flow and natural circulation of coolant at the ULPU-V experiment was simulated. The commercially available CFD software ANSYS-CFX was used. Shear stress transport (SST) model and RPI model were used for turbulence closure and wall-boiling, respectively. The averaged flow velocities in the downcomer and the baffle entry under the reactor vessel lower plenum are in good agreement with the available experimental data and recent computational results. Steam generated from the heated wall condenses rapidly and coolant flows maintains single-phase flow until coolant boils again by flashing process due to the decrease of saturation temperature induced by higher elevation. Hence, the flow rate of coolant natural circulation does not vary significantly with the change of heat flux applied at the reactor vessel, which is also consistent with the previous literatures.

Thermophysical, Hydrodynamic and Mechanical Aspects of Molten Core Relocation to Lower Plenum

  • Kune Y. Suh;Huh, Chang-Wook
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.707-712
    • /
    • 1997
  • This paper presents the current state of knowledge on molten material relocation into the lower plenum. Consequences of movement of material to the lower head are considered with regardt to the potential for reactor pressure vessel failure from both thermal hydraulic and mechanical standpoints. The models are applied to evaluating various in-vessel retention strategies for the Korean Standard power plant (KSNPP) reactor The results are summarized in terms of thermal response of the reactor vessel from the very relevant severe accident management perspective.

  • PDF

EVALUATION OF HEAT-FLUX DISTRIBUTION AT THE INNER AND OUTER REACTOR VESSEL WALLS UNDER THE IN-VESSEL RETENTION THROUGH EXTERNAL REACTOR VESSEL COOLING CONDITION

  • JUNG, JAEHOON;AN, SANG MO;HA, KWANG SOON;KIM, HWAN YEOL
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.66-73
    • /
    • 2015
  • Background: A numerical simulation was carried out to investigate the difference between internal and external heat-flux distributions at the reactor vessel wall under in-vessel retention through external reactor vessel cooling (IVR-ERVC). Methods: Total loss of feed water, station blackout, and large break loss of coolant accidents were selected as the severe accident scenarios, and a transient analysis using the element-birth-and-death technique was conducted to reflect the vessel erosion (vessel wall thickness change) effect. Results: It was found that the maximum heat flux at the focusing region was decreased at least 10% when considering the two-dimensional heat conduction at the reactor vessel wall. Conclusion: The results show that a higher thermal margin for the IVR-ERVC strategy can be achieved in the focusing region. In addition, sensitivity studies revealed that the heat flux and reactor vessel thickness are dominantly affected by the molten corium pool formation according to the accident scenario.

An interactive multiple model method to identify the in-vessel phenomenon of a nuclear plant during a severe accident from the outer wall temperature of the reactor vessel

  • Khambampati, Anil Kumar;Kim, Kyung Youn;Hur, Seop;Kim, Sung Joong;Kim, Jung Taek
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.532-548
    • /
    • 2021
  • Nuclear power plants contain several monitoring systems that can identify the in-vessel phenomena of a severe accident (SA). Though a lot of analysis and research is carried out on SA, right from the development of the nuclear industry, not all the possible circumstances are taken into consideration. Therefore, to improve the efficacy of the safety of nuclear power plants, additional analytical studies are needed that can directly monitor severe accident phenomena. This paper presents an interacting multiple model (IMM) based fault detection and diagnosis (FDD) approach for the identification of in-vessel phenomena to provide the accident propagation information using reactor vessel (RV) out-wall temperature distribution during severe accidents in a nuclear power plant. The estimation of wall temperature is treated as a state estimation problem where the time-varying wall temperature is estimated using IMM employing three multiple models for temperature evolution. From the estimated RV out-wall temperature and rate of temperature, the in-vessel phenomena are identified such as core meltdown, corium relocation, reactor vessel damage, reflooding, etc. We tested the proposed method with five different types of SA scenarios and the results show that the proposed method has estimated the outer wall temperature with good accuracy.

Investigation of seismic responses of reactor vessel and internals for beyond-design basis earthquake using elasto-plastic time history analysis

  • Lee, Sang-Jeong;Lee, Eun-ho;Lee, Changkyun;Park, No-Cheol;Choi, Youngin;Oh, Changsik
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.988-1003
    • /
    • 2021
  • Existing elastic analysis methods cannot be adhered to in order to assess the structural integrity of a reactor vessel and internals for a beyond design basis earthquake. Elasto-plastic analysis methods are required, and the factors that affect the elasto-plastic behavior of reactor materials should be taken into account. In this study, a material behavior model was developed that considers the irradiation embrittlement effect, which affects the elasto-plastic behavior of the reactor material. This was used to perform the elasto-plastic time history analyses of the reactor vessel and its internals for beyond design basis earthquake. For this investigation, appropriate beyond design basis earthquakes and reliable finite element models were used. Based on the analysis results, consideration was given to the load reduction effect and the margin change. These were transferred to the internals due to the plastic deformation of the reactor vessel.

Analysis of the flow distribution and mixing characteristics in the reactor pressure vessel

  • Tong, L.L.;Hou, L.Q.;Cao, X.W.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.93-102
    • /
    • 2021
  • The analysis of the fluid flow characteristics in reactor pressure vessel is an important part of the hydraulic design of nuclear power plant, which is related to the structure design of reactor internals, the flow distribution at core inlet and the safety of nuclear power plant. The flow distribution and mixing characteristics in the pressurized reactor vessel for the 1000MWe advanced pressurized water reactor is analyzed by using Computational Fluid Dynamics (CFD) method in this study. The geometry model of the full-scaled reactor vessel is built, which includes the cold and hot legs, downcomer, lower plenum, core, upper plenum, top plenum, and is verified with some parameters in DCD. Under normal condition, it is found that the flow skirt, core plate holes and outlet pipe cause pressure loss. The maximum and minimum flow coefficient is 1.028 and 0.961 respectively, and the standard deviation is 0.019. Compared with other reactor type, it shows relatively uniform of the flow distribution at the core inlet. The coolant mixing coefficient is investigated with adding additional variables, showing that mass transfer of coolant occurs near the interface. The coolant mainly distributes in the 90° area of the corresponding core inlet, and mixes at the interface with the coolant from the adjacent cold leg. 0.1% of corresponding coolant is still distributed at the inlet of the outer-ring components, indicating wide range of mixing coefficient distribution.

Study on the Seismic Analysis of the Reactor Vessel Internals (원자로내부구조물의 지진해석에 관한 연구)

  • Jhung, Myung-Jo;Park, Keun-Bae;Hwang, Won-Gul
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.28-36
    • /
    • 1993
  • Much effort is being done to standardize the PWR-type nuclear power plant in Korea. This paper presents the development of seismic design criteria for the reactor internals as a part of the standardization program for nuclear power plant. The seismic design loads of the reactor internals are calculated using the reference input motions of reactor vessel taken from Yong-gwang Nuclear Power Plant Units 3 and 4. An overview of analysis related to the basic parameters and methodologies is presented. Also, the response of internal components for the reactor vessel motions is carefully investigated.

  • PDF