• Title/Summary/Keyword: nuclear protein

Search Result 1,646, Processing Time 0.03 seconds

Initial Diagnosis of Acute Renal Failure Induced by Ischemia in Miniature Pig (미니돼지에서 허혈성 신장 손상의 조기진단)

  • Kim, Se-Eun;Ko, A-Ra;Bae, Chun-Sik;Park, Soo-Hyun;Han, Ho-Jae;Shim, Kyung-Mi;Kang, Seong-Soo
    • Journal of Veterinary Clinics
    • /
    • v.28 no.1
    • /
    • pp.52-56
    • /
    • 2011
  • Acute renal injury induced by ischemia is a major cause of high morbidity and mortality in hospitalized patients and a common complication in hospitalized patients. Thus, the work with acute renal failure and renal ischemia has been studied for many years. Although serum creatinine concentration that is widely used as an index of renal function performs fairly well for estimating kidney function in patients with stable chronic kidney disease, it performs poorly in the setting of acute disease. Thus, an ideal biomarker for acute kidney injury would help clinicians and scientists diagnose the most common form of acute kidney injury in hospitalized patients, acute tubular necrosis, early and accurately, and may aid to risk-stratify patients with acute kidney injury by predicting the need for renal replacement therapy, the duration of acute kidney injury, the length of stay and mortality. In this study, renal ischemia and reperfusion were performed by clapming and un-clamping right renal artery in miniature pigs. Plasma blood urea nitrogen (BUN) and creatinine were examined at pre- clamping, after-clamping at 0, 1 and 3 hours. And we searched initial indicators in these samples. Also, renal tissue was collected and searched the initial indicator by PCR and western blotting. As a result, hypoxia inducible factor $1{\alpha}$ ($HIF1{\alpha}$), nuclear factor kappa-B ($NF{\kappa}B$), $I{\kappa}B$, erythropoietin (EPO), erythropoietin receptor (EPOR), angiopoietin-1 and vascular endothelial growth factor (VEGF) were showed significant changes among the renal protein. $HIF1{\alpha}$, EPO, and EPOR were showed significant changes among the renal gene. Thus, these markers will be used as initial diagnosis of acute renal failure.

Protective effects skin keratinocyte of Oenothera biennis on hydrogen peroxide-induced oxidative stress and cell death via Nrf2/Ho1 pathway.

  • Lee, Seung Young;Jung, Ji Young;Choi, Hee Won;Choi, Kyung Min;Jeong, Jin-Woo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.103-103
    • /
    • 2018
  • Oenothera biennis, commonly known as evening primrose, a potential source of natural bioactive substances: flavonoids, steroids, tannins, fatty acids and terpenoids responsible for a diverse range of pharmacological functions. However, whether extract prepared from aerial part of O. biennis (APOB) protects skin against oxidative stress remains unknown. To investigate the protective effects of APOB against oxidative stress-induced cellular damage and elucidated the underlying mechanisms in the HaCaT human skin keratinocytes. Our results revealed that treatment with APOB prior to hydrogen peroxide ($H_2O_2$) exposure significantly increased viability, and the highest DPPH radical-scavenging activities and reducing power of HaCaT cells. APOB also effectively attenuated H2O2-induced comet tail formation and inhibited the $H_2O_2$-induced phosphorylation levels of the histone ${\gamma}H2AX$, as well as the number of apoptotic bodies and Annexin V-positive cells. In addition, APOB exhibited scavenging activity against intracellular reactive oxygen species (ROS) accumulation and restored the mitochondrial membrane potential loss by $H_2O_2$. Moreover, $H_2O_2$ enhanced the cleavage of caspase-3 and degradation of poly (ADP-ribose)-polymerase (PARP), a typical substrate protein of activated caspase-3, as well as DNA fragmentation; however, these events were almost totally reversed by pretreatment with APOB. Furthermore, APOB increased the levels of heme oxygenase-1 (HO-1), which is a potent antioxidant enzyme, associated with the induction of nuclear factor-erythroid 2-related factor 2 (Nrf2). According to our data, APOB is able to protect HaCaT cells from $H_2O_2$-induced DNA damage and cell death through blocking cellular damage related to oxidative stress through a mechanism that would affect ROS elimination and activating the Nri2/HO-1 signaling pathway.

  • PDF

Biodistribution of [S-35] Labeled Antisense Oligodeoxynucleotides Increased Tumor Targeting With Microsphere Coinjection

  • Choe, Jae-Gol;Park, Gil-Hong;Claudio Nastruzzi;Yoon S. Cho-Chung;Kim, Meyoung-Kon
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.2
    • /
    • pp.65-69
    • /
    • 2002
  • To elucidate the effect of microsphere coinjection on the administration of oligodeoxynucleotides (ODN), we have investigated biodistribution of [S-35]-labeled antisense ODN targeted to cAMP-dependent protein kinase (PKA) RI-$\alpha$ subunit in nude mice xenografted with WiDr (human colon cancer, ATCC CCL218). The strategy of using microsphere has been proposed for cancer treatment as a carrier of therapeutic ODN so that it could offer an advantage with respect to maintaining constant ODN levels in blood and obtaining higher therapeutic ODN concentration at tumor sites. Comparative biodistribution studies were performed in nude mice (female, 20 g of body weight, n = 4-6) xenografted with WiDr cancer cells, when 0.1 $\mu$Ci (specific activity, 2.94 mCi/$\mu$mole) of [S-35]-labeled RI-$\alpha$ antisense ODN was injected alone or with microsphere (PLG-18, polylactic copolymer with cationic surfactant DDAB18). Peak tumor uptake of [S-35]-labeled ODN was significantly increased from 17.7% (at 6 h) of injected dose per gram of tissue (ID/g) to 42.5% (at 24 h) ID/g when microsphere was coinjected with ODN. The different biodistribution in the kidney accumulation (e.g., 100.2% ID/g for ODN alone and 54.9%/ID/g for microshpere coinjection) may contribute to higher blood concentration (e.g., 21.5%ID/$m\ell$ for ODN alone and 37.5%ID/$m\ell$ for microsphere coinjection) of radiolabeled ODN. Of importance is the fact that the whole body retention of radioactivity increased with microsphere coinjection from 50.8%ID/g to 68.0%ID/g after 24-h of injection. This decreased kidney accumulation and increased whole body retention of [S-35]-labeled ODN resulted in a significant improvement of ODN targeting to the tumor site. In conclusion, the coinjection of microsphere appears to be an important carrier system in vehiculation of antisense oligonucleotide to the tumor tissue in vivo.

  • PDF

In Vitro and In Vivo Effects of Piceatannol and Resveratrol on Glucose Control and TLR4-NF-κB Pathway (피세아테놀과 레스베라트롤의 혈당조절 및 TLR4-NF-κB 경로 조절 작용)

  • Lee, Hee Jae;Lee, Hae-Jeung;Yang, Soo Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.2
    • /
    • pp.267-272
    • /
    • 2017
  • Piceatannol (PIC) is a natural hydroxylated analog of resveratrol (RSV), which is a polyphenol known to extend lifespan by stimulating sirtuins. The aim of this study was to investigate the effects of PIC and RSV on the toll-like receptor 4 (TLR4)-nuclear factor kappa B ($NF-{\kappa}B$) pathway in mouse hepatocytes and an obese/diabetic KK/HlJ mouse model. AML12 mouse hepatocytes in the absence or presence of palmitic acids (PA) were treated with PIC ($50{\mu}M$) or RSV ($50{\mu}M$). Male KK/HlJ mice at 20 weeks of age were divided into three subgroups as follows: 1) obese and diabetic control (KK), 2) KK_PIC, and 3) KK_RSV. PIC and RSV were administered orally at a dose of 10 mg/kg/d for 4 weeks. Four weeks of PIC and RSV treatment did not affect body weight or food intake in KK mice. Serum fasting blood glucose was significantly reduced in KK_PIC, and 2 h oral glucose tolerance test area under the curve was significantly reduced by PIC and RSV treatment in KK mice. PIC tended to improve homeostasis model assessment of the insulin resistance index (HOMA-IR) and HOMA beta-cells in diabetic KK mice. TLR4 and $NF-{\kappa}B$ were down-regulated by PIC and RSV treatments in hepatocytes in the absence or presence of PA. Insulin receptor, AMP-activated protein kinase, peroxisome proliferator-activated receptor gamma, nucleotide oligomerization domain-like receptor family pyrin domain-containing 3, interleukin-1, and $NF-{\kappa}B$ were altered in PIC-treated livers. Collectively, PIC and RSV inhibited the $TLR4-NF-{\kappa}B$ pathway, and PIC seems to be more effective than RSV in the regulation of analyzed targets, which are involved in insulin signaling and inflammation in vivo.

Effect of Tartary Buckwheat Sprout on Non-Alcoholic Fatty Liver Disease through Anti-Histone Acetyltransferase Activity (쓴메밀 새싹 추출물의 히스톤 아세틸화 효소 활성 저해에 의한 비알코올성 지방간 억제 효능)

  • Hwang, Jin-Taek;Nam, Tae Gyu;Chung, Min-Yu;Park, Jae Ho;Choi, Hyo-Kyoung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.2
    • /
    • pp.169-176
    • /
    • 2017
  • Non-alcoholic fatty liver disease (NAFLD) is caused by chronic lipid accumulation due to dysregulation of lipid metabolism in the liver, and it is associated with various human diseases such as obesity, dyslipidemia, hypertension, and diabetes. Histone acetylation is a representative epigenetic mechanism regulated by histone acetyltransferases (HATs) and deacetylases. We observed that tartary buckwheat sprout (TBS) suppressed lipid accumulation in HepG2 cells through its anti-HAT activity. We showed that TBS was a novel HAT inhibitor with specificity for the major HAT enzyme p300. Importantly, TBS reduced acetylation of total and histone proteins, H3K9, H3K36, and H4K8, resulting in decreased transcriptional activities of sterol regulatory element-binding protein 1c, ATP citrate lyase, and fatty acid synthase. These results suggest that TBS inhibits the NAFLD transcription-modulating activity of lipogenesis-related genes through modification of histone acetylation.

Taxifolin Inhibited the Nitric Oxide Production and Expression of Pro-inflammatory Cytokine mRNA in Lipopolysaccharide-stimulated RAW264.7 Cells

  • Rhee, Man-Hee;Endale, Mehari;Kamruzzaman, SM;Lee, Whi-Min;Park, Hwa-Jin;Yoo, Myung-Jo;Cho, Jae-Youl
    • Biomedical Science Letters
    • /
    • v.14 no.3
    • /
    • pp.147-155
    • /
    • 2008
  • In previous works, we found that solvent extract of Opuntia humifusa Raf., a member of the lactaceae family, displayed potent anti-oxidative and anti-inflammatory activities. Thus, all solvent fractions, except for the water layer, showed potent scavenging effects. According to activity-guided fractionation, one of active radical scavenging principles in the ethyl acetate fraction was found to be taxifolin. In this study, we investigated whether taxifolin showed anti-oxidative activity. In addition, taxifolin modulated nitric oxide (NO) release and the expression of pro-inflammatory cytokine mRNA such as interleukin-$1{\beta}$ (IL-$1{\beta}$), IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF), and TNF-${\alpha}$. Taxifolin showed potent anti-oxidant activity with the $IC_{50}\;of\;8.5{\pm}1.4\;and\;9.3{\pm}1.0{\mu}M$ using xanthine/xanthine oxidase (XO) assay and 2,2-Diphenyl-lpicrylhydrazyl radical (DPPH) assay, respectively. We next determined the role of taxifolin on the immunomodulating activity using murine macrophage cell line RAW264.7 cells. Taxifolin dose-dependently inhibited NO production in lipopolysaccharide (LPS)-activated RAW264.7. It also significantly blocked the expression of inducible NO synthase (iNOS) mRNA in the LPS-stimulated RAW264.7 cells. In addition, taxifolin potently suppressed the expression of IL-$1{\beta}$, IL-6 and GM-CSF mRNA in LPS-activated RAW264.7 cells, but not that of TNF-${\alpha}$ Moreover, taxifolin significantly inhibited the transcriptional activity of nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and activator protein -1 (AP-1). These results suggest that taxifolin may downregulate inflammatory iNOS, IL-$1{\beta}$, IL-6 and GM-CSF gene expressions through inhibition of NF-K and AP-1 activation in LPS-stimulated RAW264.7 cells.

  • PDF

Immunohistochemical Expressions of Sodium/Iodide Symporter (NIS) and Thyroid Transcription Factor-l (TTF-1) and Their Relationship in Primary Pulmonary Adenocarcinoma

  • Lee Kyung-Eun;Kang Do-Young;Choi Phil-Jo;Hong Young-Seoub;Roh Mee-Sook;Shon Jae-Jeong;Lee Jung-Min;Hwang Soo-Myoung
    • Biomedical Science Letters
    • /
    • v.12 no.3
    • /
    • pp.171-176
    • /
    • 2006
  • Sodium iodide symporter (NIS) plays a key role in thyroid hormone production by efficiently accumulating iodide from the circulating blood into the thyocytes, and this is done against an electrochemical gradient. Thyroid transcription factor-l (TTF-l) is a homeodomain-containing protein expressed in embryonic diencephalons, thyroid, and lung and has been found to bind to thyroid specific promoters and to activate their transcriptional activity. TTF-l may be one of the factors capable of activating NIS gene expression in the thyroid gland, thus it accounts for the lower levels of NIS gene expression that are seen in the extrathyroidal tissues. However, a high frequency of TTF-l expression has been observed, especially in primary lung adenocarcinoma. The present study was undertaken in order to elucidate the relationship between the expression of NIS and TTF-l in primary lung adenocarcinoma. Immunohistochemical studies for NIS and TTF-l were performed in 64 primary lung adenocarcinomas. Immunoreactivities for NIS and TTF-l were found in 49 (76.6%) and 45 (70.3%) out of 64 cases, respectively. Forty-one (83.7%) of the 49 cases with positive NIS immunoreactivity showed positive TTF-l expression, whereas 11 (73.3%) of the 15 cases with negative NIS immunoreactivity showed negative TTF-l expression (P<0.05). So the NIS expression was significantly associated with the TTF-l expression. These findings suggest that TTF-l may be one of the factors capable of activating NIS gene expression in primary lung adenocarcinoma. Further studies are needed to define the relation between NIS and TTF-l for examining the mechanisms of tissue-specific NIS expression.

  • PDF

A Fibrin Matrix Promotes the Differentiation of EMSCs Isolated from Nasal Respiratory Mucosa to Myelinating Phenotypical Schwann-Like Cells

  • Chen, Qian;Zhang, Zhijian;Liu, Jinbo;He, Qinghua;Zhou, Yuepeng;Shao, Genbao;Sun, Xianglan;Cao, Xudong;Gong, Aihua;Jiang, Ping
    • Molecules and Cells
    • /
    • v.38 no.3
    • /
    • pp.221-228
    • /
    • 2015
  • Because Schwann cells perform the triple tasks of myelination, axon guidance and neurotrophin synthesis, they are candidates for cell transplantation that might cure some types of nervous-system degenerative diseases or injuries. However, Schwann cells are difficult to obtain. As another option, ectomesenchymal stem cells (EMSCs) can be easily harvested from the nasal respiratory mucosa. Whether fibrin, an important transplantation vehicle, can improve the differentiation of EMSCs into Schwann-like cells (SLCs) deserves further research. EMSCs were isolated from rat nasal respiratory mucosa and were purified using anti-CD133 magnetic cell sorting. The purified cells strongly expressed HNK-1, nestin, $p75^{NTR}$, S-100, and vimentin. Using nuclear staining, the MTT assay and Western blotting analysis of the expression of cell-cycle markers, the proliferation rate of EMSCs on a fibrin matrix was found to be significantly higher than that of cells grown on a plastic surface but insignificantly lower than that of cells grown on fibronectin. Additionally, the EMSCs grown on the fibrin matrix expressed myelination-related molecules, including myelin basic protein (MBP), 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) and galactocerebrosides (GalCer), more strongly than did those grown on fibronectin or a plastic surface. Furthermore, the EMSCs grown on the fibrin matrix synthesized more neurotrophins compared with those grown on fibronectin or a plastic surface. The expression level of integrin in EMSCs grown on fibrin was similar to that of cells grown on fibronectin but was higher than that of cells grown on a plastic surface. These results demonstrated that fibrin not only promoted EMSC proliferation but also the differentiation of EMSCs into the SLCs. Our findings suggested that fibrin has great promise as a cell transplantation vehicle for the treatment of some types of nervous system diseases or injuries.

Germline Variations of Apurinic/Apyrimidinic Endonuclease 1 (APEX1) Detected in Female Breast Cancer Patients

  • Ali, Kashif;Mahjabeen, Ishrat;Sabir, Maimoona;Baig, Ruqia Mehmood;Zafeer, Maryam;Faheem, Muhammad;Kayani, Mahmood Akhtar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7589-7595
    • /
    • 2014
  • Apurinic/apyrimidinic endonuclease 1 (APEX1) is a multifunctional protein which plays a central role in the BER pathway. APEX1 gene being highly polymorphic in cancer patients and has been indicated to have a contributive role in Apurinic/apyrimidinic (AP) site accumulation in DNA and consequently an increased risk of cancer development. In this case-control study, all exons of the APEX1 gene and its exon/intron boundaries were amplified in 530 breast cancer patients and 395 matched healthy controls and then analyzed by single-stranded conformational polymorphism followed by sequencing. Sequence analysis revealed fourteen heterozygous mutations, seven 5'UTR, one 3'UTR, two intronic and four missense. Among identified mutations one 5'UTR (rs41561214), one 3'UTR (rs17112002) and one missense mutation (Ser129Arg, Mahjabeen et al., 2013) had already been reported while the remaining eleven mutations. Six novel mutations (g.20923366T>G, g.20923435G>A, g.20923462G>A, g.20923516G>A, 20923539G>A, g.20923529C>T) were observed in 5'UTR region, two (g.20923585T>G, g.20923589T>G) in intron1 and three missense (Glu101Lys, Ala121Pro, Ser123Trp) in exon 4. Frequencues of 5'UTR mutations; g.20923366T>G, g.20923435G>A and 3'UTR (rs17112002) were calculated as 0.13, 0.1 and 0.1 respectively. Whereas, the frequency of missense mutations Glu101Lys, Ser123Trp and Ser129Arg was calculated as 0.05. A significant association was observed between APEX1 mutations and increased breast cancer by ~9 fold (OR=8.68, 95%CI=2.64 to 28.5) with g.20923435G>A (5'UTR), ~13 fold (OR= 12.6, 95%CI=3.01 to 53.0) with g.20923539G>A (5'UTR) and~5 fold increase with three missense mutations [Glu101Lys (OR=4.82, 95%CI=1.97 to 11.80), Ser123Trp (OR=4.62, 95%CI=1.7 to 12.19), Ser129Arg (OR=4.86, 95%CI=1.43 to 16.53)]. The incidence of observed mutations was found higher in patients with family history and with early menopause. In conclusion, our study demonstrates a significant association between germ line APEX1 mutations and breast cancer patients in the Pakistani population.

Studies on OsABF3 Gene Isolation and ABA Signal Transduction in Rice Plants Against Abiotic Stress (비 생물학적 스트레스 시 벼에서 OsABF3 유전자 분리와 ABA 신호전달 대한 연구)

  • Ahn, Chul-Hyun;Park, Phun-Bum
    • Korean Journal of Plant Resources
    • /
    • v.30 no.5
    • /
    • pp.571-577
    • /
    • 2017
  • Abscisic acid (ABA) is an important phytohormone involved in abiotic stress tolerance in plants. The group A bZIP transcription factors play important roles in the ABA signaling pathway in Arabidopsis but little is known about their functions in rice. In our current study, we have isolated and characterized a group A bZIP transcription factor in rice, OsABF3 (Oryza sativa ABA responsive element binding factor 3). We examined the expression patterns of OsABF3 in various tissues and time course analysis after abiotic stress treatments such as drought, salinity, cold, oxidative stress, and ABA in rice. Subcellular localization analysis in maize protoplasts using a GFP fusion vector further indicated that OsABF3 is a nuclear protein. Moreover, in a yeast one-hybrid experiment, OsABF3 was shown to bind to ABA responsive elements (ABREs) and its N-terminal region found to be necessary to transactivate a downstream reporter. A homozygous T-DNA insertional mutant of OsABF3 is more sensitive to salinity, drought, and oxidative stress compared with wild type plants & OsABF3OX plants. In addition, this Osabf3 mutant showed a significantly decreased sensitivity to high levels of ABA at germination and post-germination. Collectively, our present results indicate that OsABF3 functions as a transcriptional regulator that modulates the expression of abiotic stress-responsive genes through an ABA-dependent pathway.