• Title/Summary/Keyword: nuclear proliferation

Search Result 508, Processing Time 0.033 seconds

In Vivo Non Invasive Molecular Imaging for Immune Cell Tracking in Small Animals

  • Youn, Hyewon;Hong, Kee-Jong
    • IMMUNE NETWORK
    • /
    • v.12 no.6
    • /
    • pp.223-229
    • /
    • 2012
  • Clinical and preclinical in vivo immune cell imaging approaches have been used to study immune cell proliferation, apoptosis and interaction at the microscopic (intra-vital imaging) and macroscopic (whole-body imaging) level by use of ex vivo or in vivo labeling method. A series of imaging techniques ranging from non-radiation based techniques such as optical imaging, MRI, and ultrasound to radiation based CT/nuclear imaging can be used for in vivo immune cell tracking. These imaging modalities highlight the intrinsic behavior of different immune cell populations in physiological context. Fluorescent, radioactive or paramagnetic probes can be used in direct labeling protocols to monitor the specific cell population. Reporter genes can also be used for genetic, indirect labeling protocols to track the fate of a given cell subpopulation in vivo. In this review, we summarized several methods dealing with dendritic cell, macrophage, and T lymphocyte specifically labeled for different macroscopic whole-body imaging techniques both for the study of their physiological function and in the context of immunotherapy to exploit imaging-derived information and immune-based treatments.

Intracoronary Radiation Therapy Using Re-188 after percutaneous Coronary Angioplasty (경피적 관동맥혈관성형술 후 Re-188을 이용한 혈관 내 방사선조사요법)

  • Chae, In-Ho;Lee, Myoung-Mook;Lee, Dong-Soo
    • 대한핵의학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.228-241
    • /
    • 1999
  • Percutaneous coronary angioplasty is well established therapeutic modality in the management of coronary artery disease. However, the high restenosis rate of 30 to 50% limits its usefulness. The principal mechanism of restenosis, intimal hyperplasia, is the proliferative response of vessel wall to injury, which consists largely of smooth muscle cells. A large body of animal investigations and a limited number of clinical studies have established the ability of ionizing radiation to reduce neointimal proliferation and restenosis rate significantly. Human studies have been reported that intravascular radiation after first restenosis inhibits a second restenosis. Encouraged by these reports, we are also conducting a double blind, placebo-controlled, randomized trial to evaluate this new therapeutic modality in patients with coronary artery stenosis. The objective of our trial is to determine the safety and efficacy of catheter-based solutional beta emitting radioisotope system in preventing restenosis after angioplasty. This review describes the vascular brachytherapy systems and isotopes that have been utilized in the initial clinical trials performed in this area of post PTCA coronary restenosis. The results of many worldwide ongoing clinical trials will determine whether this new technology will change the future practice of vascular intervention.

  • PDF

Increased Expression of Epithelial Cell Adhesion Molecule (EpCAM) in Rat Hepatic Tumors Induced by Diethylnitrosamine

  • Kang, Jin Seok
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.3627-3630
    • /
    • 2012
  • The epithelial cell adhesion molecule (EpCAM) is a pan-epithelial differentiation antigen that is expressed on almost all carcinomas. However, a role in rat liver carcinogenesis has never been reported previously. Thus, its expression was investigated herein in rat liver tumors induced by diethylnitrosamine (DEN). Twenty male 5-week-old F344 rats were used in this experiment. Mini-osmotic pumps containing doses of 47.5 mg of DEN were inserted into the abdominal cavity of each animal to initiate liver carcinogenesis. All animals were sacrificed at 26 weeks after DEN treatment. At necropsy, hepatic masses were processed for histopathological examination, which revealed forty-four hepatocellular adenomas (HCAs) and twenty hepatocellular carcinomas (HCC). Tumors were immunohistochemically analyzed for EpCAM, proliferating cell nuclear antigen (PCNA) and co-localization of the two. EpCAM expression was mainly detected in hepatic tumor cells, showing a cytoplasmic staining pattern. However, expression was also slightly observed in normally-appearing surrounding hepatic cells. PCNA expression was highly detected in tumor cells, showing nuclear staining. Double staining of EpCAM and PCNA in tumors showed many cells with co-localization. Taken together, EpCAM and PCNA expression were increased in DEN-induced tumors and many tumor cells showed co-expression. It is suggested that EpCAM may increase during DEN-induced tumors, possibly associated with cell proliferation.

Fine Needle Aspiration Cytology of Columnar Cell Variant of Papillary Carcinoma of the Thyroid - A Case Report - (갑상선의 원주세포형 유두상 암종의 세침흡인 세포학적 소견 - 1예 보고 -)

  • Jung, Ji-Han;Kang, Chang-Suk;Shim, Sang-In;Kim, Byung-Kee;Lee, Kyo-Young
    • The Korean Journal of Cytopathology
    • /
    • v.10 no.2
    • /
    • pp.179-184
    • /
    • 1999
  • The columnar cell variant of papillary carcinoma is a rare tumor of the thyroid, associated with aggressive behavior, early metastasis, and a rapidly fatal course. We present the fine needle aspiration cytologic(FNAC) findings of columnar ceil variant of papillary carcinoma with cytohistologic correlation. In the smears, the tumor fragments showed mainly papillary pattern and a few scattered individual cells were present around the papillary fragments. The tumor cells were columnar or cuboidal and exhibited pseudostratification of the nuclei. The nuclei were oval to elongated with finely stippled chromatin and inconspicous nucleoli. Neither nuclear grooves nor intracytoplasmic inclusion was found. The FNAC diagnosis was consistent with papillary carcinoma. Total thyroidectomy was done and the histologic finding of the mass showed a predominantly papillary and focal solid proliferation of columar cells with marked nuclear pseudostratification. The unique histopathologic features and highly aggressive nature of columnar ceil variant of papillary carcinoma require that this variant should be differeniated from common papillary carcinoma of the thyroid.

  • PDF

Gliotoxin from the marine fungus Aspergillus fumigatus induces apoptosis in HT1080 fibrosarcoma cells by downregulating NF-κB

  • Kim, Young-Sang;Park, Sun Joo
    • Fisheries and Aquatic Sciences
    • /
    • v.19 no.9
    • /
    • pp.35.1-35.6
    • /
    • 2016
  • Gliotoxin has been recognized as an immunosuppressive agent for a long time. Recently, it was reported to have antitumor properties. However, the mechanisms by which it inhibits tumors remain unclear. Here, we showed that gliotoxin isolated from the marine fungus Aspergillus fumigatus inhibited proliferation and induced apoptosis in HT1080 human fibrosarcoma cells. Gliotoxin repressed phosphorylation-dependent degradation of $I{\kappa}B-{\alpha}$, an antagonist of nuclear factor kappa B ($NF-{\kappa}B$), which is a known tumor-promoting factor. This coincided with a decrease in nuclear import of $NF-{\kappa}B$, suggesting its signaling activity was impaired. Moreover, gliotoxin increased intracellular reactive oxygen species (ROS). Since ROS have been known to inhibit $NF-{\kappa}B$, this may also contribute to gliotoxin's antitumorigenic effects. These results suggest that gliotoxin suppressed the activation of $NF-{\kappa}B$ by inhibiting phosphorylation and degradation of $I{\kappa}B-{\alpha}$ and by increasing ROS, which resulted in apoptosis of HT1080 cells. Cumulatively, gliotoxin is a promising candidate antagonist of $NF-{\kappa}B$, and it should be investigated for its possible use as a selective inhibitor of human fibrosarcoma cells.

A Retinoid Antagonist Inhibits the Retinoic Acid Response Element that Located in the Promoter Region of the Cytomegalovirus

  • Lee, Mi-Ock;Ahn, Ju-Mi;Han, Sun-Young
    • Biomolecules & Therapeutics
    • /
    • v.6 no.3
    • /
    • pp.276-282
    • /
    • 1998
  • Retinoids regulate a wide variety of biological processes such as cellular proliferation and differentiation in many cell types. They have also shown to stimulate replication of several viruses including human cytomegalovirus (CMV). Retinoid signalling pathway involves two distinct subfamilies of nuclear receptors, retinoic acid receptors (RARs) and retinoid X receptors (RXRs) that bind to specific retinoic acid response elements (RAREs) in the promoter regions of retinoid-target genes. Here, we characterized RAREs in the regulatory regions of the CMV and of the hepatitis B vi.us (HBV). The viral RAREs, i.e., CMV-RARE and HBV-RARE, are composed of two consensus RARE half-sites (A/GGGTCA) arranged as a direct repeat separated by 5-bp and 1-bp, respectively. The RAREs were activated by both RAR/RXR heterodimers and RXR homodimers in transient transfection experiments. We also found that COUP-TF$\alpha$ (chicken ovalbumin upstream promoter-transcription factor u) and COUP-TF$\beta$ repressed the retinoid response of the viral elements. Further we demonstrated that previously known retinoid antagonist, SRI 1330, repressed retinoid-induced transactivation of the CMV-RARE. These results implicate Vitamin A, it's nuclear receptors and COUP-TFs as important regulators of the CMV and HBV pathogenesis and the SRl1330 as potential negative modulator of such retinoid-dependent processes.

  • PDF

Ubiquitin E3 ligases controlling p53 stability

  • Lee, Seong-Won;Seong, Min-Woo;Jeon, Young-Joo;Chung, Chin-Ha
    • Animal cells and systems
    • /
    • v.16 no.3
    • /
    • pp.173-182
    • /
    • 2012
  • The p53 protein plays a pivotal role in tumor suppression. The cellular level of p53 is normally kept low by proteasome-mediated degradation, allowing cell cycle progression and cell proliferation. Under stress conditions, such as DNA damage, p53 is stabilized and activated through various post-translational modifications of itself as well as of its regulatory proteins for induction of the downstream genes responsible for cell cycle arrest, DNA repair, and apoptosis. Therefore, the level of p53 should be tightly regulated for normal cell growth and for prevention of the accumulation of mutations in DNA under stress conditions, which otherwise would lead to tumorigenesis. Since the discovery of Mdm2, a critical ubiquitin E3 ligase that destabilizes p53 in mammalian cells, nearly 20 different E3 ligases have been identified and shown to function in the control of stability, nuclear export, translocation to chromatin or nuclear foci, and oligomerization of p53. So far, a large number of excellent reviews have been published on the control of p53 function in various aspects. Therefore, this review will focus only on mammalian ubiquitin E3 ligases that mediate proteasome-dependent degradation of p53.

CDDO-Me alleviates oxidative stress in human mesenchymal stem cells

  • Cho, Hye Jin;Kim, Tae Min
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.285-291
    • /
    • 2021
  • Mesenchymal stem cells (MSCs) have been recognized as a therapeutic tool for various diseases due to its unique ability for tissue regeneration and immune regulation. However, poor survival during in vitro expansion and after being administrated in vivo limits its clinical uses. Accordingly, protocols for enhancing cell survivability is critical for establishing an efficient cell therapy is needed. CDDO-Me is a synthetic C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid, which is known to stimulate nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway. Herein, report that CDDO-Me promoted the proliferation of MSCs and increased colony forming units (CFU) numbers. No alteration in differentiation into tri-lineage mesodermal cells was found after CDDO-Me treatment. We observed that CDDO-Me treatment reduced the cell death induced by oxidative stress, demonstrated by the augment in the expression of Nrf2-downstream genes. Lastly, CDDO-Me led to the nuclear translocation of NRF2. Our data indicate that CDDO-Me can enhance the functionality of MSCs by stimulating cell survival and increasing viability under oxidative stress.

2-Methoxy-1,4-naphthoquinone (MNQ) regulates cancer key genes of MAPK, PI3K, and NF-κB pathways in Raji cells

  • Wong, Teck Yew;Menaga, Subramaniam;Huang, Chi-Ying F.;Ho, Siong Hock Anthony;Gan, Seng Chiew;Lim, Yang Mooi
    • Genomics & Informatics
    • /
    • v.20 no.1
    • /
    • pp.7.1-7.13
    • /
    • 2022
  • 2-Methoxy-1,4-naphthoquinone (MNQ) has been shown to cause cytotoxic towards various cancer cell lines. This study is designed to investigate the regulatory effect of MNQ on the key cancer genes in mitogen-activated protein kinase, phosphoinositide 3-kinase, and nuclear factor κB signaling pathways. The expression levels of the genes were compared at different time point using polymerase chain reaction arrays and Ingenuity Pathway Analysis was performed to identify gene networks that are most significant to key cancer genes. A total of 43 differentially expressed genes were identified with 21 up-regulated and 22 down-regulated genes. Up-regulated genes were involved in apoptosis, cell cycle and act as tumor suppressor while down-regulated genes were involved in anti-apoptosis, angiogenesis, cell cycle and act as transcription factor as well as proto-oncogenes. MNQ exhibited multiple regulatory effects on the cancer key genes that targeting at cell proliferation, cell differentiation, cell transformation, apoptosis, reduce inflammatory responses, inhibits angiogenesis and metastasis.

Cornuside inhibits glucose-induced proliferation and inflammatory response of mesangial cells

  • Xiaoxin Li;Lizhong Guo;Fei Huang;Wei Xu;Guiqing Peng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.6
    • /
    • pp.513-520
    • /
    • 2023
  • Cornuside is a secoiridoid glucoside compound extracted from the fruits of Cornus officinalis. Cornuside has immunomodulatory and anti-inflammatory properties; however, its potential therapeutic effects on diabetic nephropathy (DN) have not been completely explored. In this study, we established an in vitro model of DN through treating mesangial cells (MMCs) with glucose. MMCs were then treated with different concentrations of cornuside (0, 5, 10, and 30 μM). Cell viability was determined using cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays. Levels of proinflammatory cytokines, including interleukin (IL)-6, tumor necrosis factor-α, and IL-1β were examined using enzyme-linked immunosorbent assay. Reverse transcription quantitative real-time polymerase chain reaction and Western blotting were performed to detect the expression of AKT and nuclear factor-kappa B (NF-κB)-associated genes. We found that cornuside treatment significantly reduced glucose-induced increase in MMC viability and expression of pro-inflammatory cytokines. Moreover, cornuside inhibited glucose-induced phosphorylation of AKT and NF-κB inhibitor alpha, decreased the expression of proliferating cell nuclear antigen and cyclin D1, and increased the expression of p21. Our study indicates that the anti-inflammatory properties of cornuside in DN are due to AKT and NF-κB inactivation in MMCs.