• Title/Summary/Keyword: nuclear proliferation

Search Result 496, Processing Time 0.029 seconds

Evaluation of neutron attenuation properties using helium-4 scintillation detector for dry cask inspection

  • Jihun Moon;Jisu Kim;Heejun Chung;Sung-Woo Kwak;Kyung Taek Lim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3506-3513
    • /
    • 2023
  • In this paper, we demonstrate the neutron attenuation of dry cask shielding materials using the S670e helium-4 detector manufactured by Arktis Radiation Ltd. In particular, two materials expected to be applied to the TN-32 dry cask manufactured by ORANO Korea and KORAD-21 by the Korea Radioactive Waste Agency (KORAD) were utilized. The measured neutron attenuation was compared with our Monte Carlo N-Particle Transport simulation results, and the difference is given as the root mean square (RMS). For the fast neutron case, a rapid decline in neutron counts was observed as a function of increasing material thickness, exhibiting an exponential relationship. The discrepancy between the experimentally acquired data and simulation results for the fast neutron was maintained within a 2.3% RMS. In contrast, the observed thermal neutron count demonstrated an initial rise, attained a maximum value, and exhibited an exponential decline as a function of increasing thickness. In particular, the discrepancy between the measured and simulated peak locations for thermal neutrons displayed an RMS deviation of approximately 17.3-22.4%. Finally, the results suggest that a minimum thickness of 5 cm for Li-6 is necessary to achieve a sufficiently significant cross-section, effectively capturing incoming thermal neutrons within the dry cask.

An Analysis of Constraints on Pyroprocessing Technology Development in ROK Under the US Nonproliferation Policy

  • Jae Soo Ryu
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.383-395
    • /
    • 2023
  • Since 1997, the Republic of Korea (ROK) has been developing pyro-processing (Pyro) technology to reduce the disposal burden of high-level radioactive waste by recycling spent nuclear fuel (SNF). Compared to plutonium and uranium extraction process, Korean Pyro technology has relatively excellent proliferation resistance that cannot separate pure plutonium owing to its intrinsic characteristics. Regarding Pyro technology development of ROK, the Bush administration considered that Pyro is not reprocessing under the Global Nuclear Energy Partnership, whereas the Obama administration considered that Pyro is subject to reprocessing. However, the Bush and Obama administrations did not allow ROK to conduct full Pyro activities using SNF, even though ROK had faithfully complied with international nonproliferation obligations. This is because the US nuclear nonproliferation policy to prevent the spread of sensitive technologies, such as enrichment and reprocessing, has a strong effect on ROK, unlike Japan, on a bilateral level beyond the NPT regime for non-proliferation of nuclear weapons.

Comparison of proliferation resistance among natural uranium, thorium-uranium, and thorium-plutonium fuels used in CANada Deuterium Uranium in deep geological repository by combining multiattribute utility analysis with transport model

  • Nagasaki, Shinya;Wang, Xiaopan;Buijs, Adriaan
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.794-800
    • /
    • 2018
  • The proliferation resistance (PR) of Th/U and Th/Pu fuels used in CANada Deuterium Uranium for the deep geological repository was assessed by combining the multiattribute utility analysis proposed by Chirayath et al., 2015 with the transport model of radionuclides in the repository and comparing with that of the used natural U fuel case. It was found that there was no significant advantage for Th/U and Th/Pu fuels from the viewpoint of the PR in the repository. It was also found that the PR values for used nuclear fuels in the repository of Th/U, Th/Pu, and natural U was comparable with those for enrichment and reprocessing facilities in the pressurized water reactor (PWR) nuclear fuel cycle. On the other hand, the PR values considering the transport of radionuclides in the repository were found to be slightly smaller than those without their transport after the used nuclear fuels started dissolving after 1,000 years.

Ginsenosides Promote Proliferation of Cultured Ovarian Germ Cells Involving Protein Kinase C-mediated System in Embryonic Chickens

  • Liu, Hongyun;Zhang, Caiqiao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.7
    • /
    • pp.958-963
    • /
    • 2006
  • The effect of ginsenosides (GS) on germ cell proliferation was evaluated with a chicken ovarian germ-somatic cell coculture model and the mechanism involving protein kinase C (PKC) pathway was investigated. Ovarian cells were cultured in serum-free McCoy's 5A medium and challenged with GS alone or in combinations with PKC activator (phorbol 12-myristate 13-acetate, PMA) or inhibitor ($H_7$) for 48 h. The number of germ cells was counted and the proliferating cells were identified by immunocytochemistry of proliferating cell nuclear antigen (PCNA). Results showed that GS significantly increased germ cell proliferation and this stimulating effect was further increased by PMA, but inhibited by H7, in a dose-dependent manner. Moreover, GS-elevated PCNA expression and the PCNA -labeling index of germ cells displayed similar changes with the increased numbers of germ cells. These results indicated that GS stimulated proliferation of ovarian germ cells with involvement of the PKC-mediated system.

A Study on Current Status of Detection Technology and Establishment of National Detection Regime against Nuclear/Radiological Terrorism (핵테러/방사능테러 탐지 기술 현황 및 국내 탐지체계 구축 방안에 관한 연구)

  • Kwak, Sung-Woo;Jang, Sung-Soon;Lee, Joung-Hoon;Yoo, Ho-Sik
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.3
    • /
    • pp.115-120
    • /
    • 2009
  • Since 1990s, some events - detection of a dirty bomb in a Russian nation park in 1995, 9/11 terrorist attack to WTC in 2001, discovery of Al-Qaeda's experimentation to build a dirty bomb in 2003 etc - have showed that nuclear or radiological terrorism relating to radioactive materials (hereinafter "radioactive materials" is referred to as "nuclear material, nuclear spent fuel and radioactive source") is not incredible but serious and credible threat. Thus, to respond to the new threat, the international community has not only strengthened security and physical protection of radioactive materials but also established prevention of and response to illicit trafficking of radioactive materials. In this regard, our government has enacted or revised the national regulatory framework with a view to improving security of radioactive materials and joined the international convention or agreement to meet this international trend. For the purpose of prevention of nuclear/radiological terrorism, this paper reviews physical characteristics of nuclear material and existing detection instruments used for prevention of illicit trafficking. Finally, national detection regime against nuclear/radiological terrorism based on paths of the smuggled radioactive materials to terrorist's target building/area, national topography and road networks, and defence-in-depth concept is suggested in this paper. This study should contribute to protect people's health, safety and environment from nuclear/radiological terrorism.

CORE DESIGN FOR HETEROGENEOUS THORIUM FUEL ASSEMBLIES FOR PWR(1)-NUCLEAR DESIGN AND FUEL CYCLE ECONOMY

  • BAE KANG-MOK;KIM MYUNG-HYUN
    • Nuclear Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.91-100
    • /
    • 2005
  • Kyung-hee Thorium Fuel (KTF), a heterogeneous thorium-based seed and blanket design concept for pressurized light water reactors, is being studied as an alternative to enhance proliferation resistance and fuel cycle economics of PWRs. The proliferation resistance characteristics of the KTF assembly design were evaluated through parametric studies using neutronic performance indices such as Bare Critical Mass (BCM), Spontaneous Neutron Source rate (SNS), Thermal Generation rate (TG), and Radio-Toxicity. Also, Fissile Economic Index (FEI), a new index for gauging fuel cycle economy, was suggested and applied to optimize the KTF design. A core loaded with optimized KTF assemblies with a seed-to-blanket ratio of 1: 1 was tested at the Korea Next Generation Reactor (KNGR), ARP-1400. Core design characteristics for cycle length, power distribution, and power peaking were evaluated by HELIOS and MASTER code systems for nine reload cycles. The core calculation results show that the KTF assembly design has nearly the same neutronic performance as those of a conventional $UO_2$ fuel assembly. However, the power peaking factor is relatively higher than that of conventional PWRs as the maximum Fq is 2.69 at the M$9^{th}$ equilibrium cycle while the design limit is 2.58. In order to assess the economic potential of a heterogeneous thorium fuel core, the front-end fuel cycle costs as well as the spent fuel disposal costs were compared with those of a reference PWR fueled with $UO_2$. In the case of comprising back-end fuel cycle cost, the fuel cycle cost of APR-1400 with a KTF assembly is 4.99 mills/KWe-yr, which is lower than that (5.23 mills/KWe-yr) of a conventional PWR. Proliferation resistance potential, BCM, SNS, and TG of a heterogeneous thorium-fueled core are much higher than those of the $UO_2$ core. The once-through fuel cycle application of heterogeneous thorium fuel assemblies demonstrated good competitiveness relative to $UO_2$ in terms of economics.