• Title/Summary/Keyword: nuclear physics

Search Result 1,077, Processing Time 0.029 seconds

Beam-target configurations and robustness performance of the tungsten granular flow spallation target for an Accelerator-Driven Sub-critical system

  • Cai, Han-Jie;Jia, Huan;Qi, Xin;Lin, Ping;Zhang, Sheng;Tian, Yuan;Qin, Yuanshuai;Zhang, Xunchao;Yang, Lei;He, Yuan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2650-2659
    • /
    • 2022
  • The dense granular flow spallation target is a new target concept proposed for an Accelerator-Driven Sub-critical (ADS) system. In this paper, the beam-target configurations of a tungsten granular flow target for the ADS with a thermal power of 1 GW is explored. The beam profile options using different scanning methods are discussed. The critical geometry parameters are adjusted to investigate the performance of the granular target from the aspects of neutron efficiency, stability and temperature distribution in target medium. To figure out how the target under accident conditions would behave, different clogging conditions are induced in the simulation. The dynamic processes are analyzed and some important parameters such as abnormal temperature rise and beam cutoff time window are obtained. The response of the sub-critical reactor to a clogging accident is also investigated. It is indicated that the monitoring of the granular flow by the neutron detectors in the sub-critical core will be effective.

Facility to study neutronic properties of a hybrid thorium reactor with a source of thermonuclear neutrons based on a magnetic trap

  • Arzhannikov, Andrey V.;Shmakov, Vladimir M.;Modestov, Dmitry G.;Bedenko, Sergey V.;Prikhodko, Vadim V.;Lutsik, Igor O.;Shamanin, Igor V.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2460-2470
    • /
    • 2020
  • To study the thermophysical and neutronic properties of thorium-plutonium fuel, a conceptual design of a hybrid facility consisting of a subcritical Th-Pu reactor core and a source of additional D-D neutrons that places on the axis of the core is proposed. The source of such neutrons is a column of high-temperature plasma held in a long magnetic trap for D-D fusionreactions. This article presents computer simulation results of generation of thermonuclear neutrons in the plasma, facility neutronic properties and the evolution of a fuel nuclide composition in the reactor core. Simulations were performed for an axis-symmetric radially profiled reactor core consisting of zones with various nuclear fuel composition. Such reactor core containing a continuously operating stationary D-D neutron source with a yield intensity of Y = 2 × 1016 neutrons per second can operate as a nuclear hybrid system at its effective coefficient of neutron multiplication 0.95-0.99. Options are proposed for optimizing plasma parameters to increase the neutron yield in order to compensate the effective multiplication factor decreasing and plant power in a long operating cycle (3000-day duration). The obtained simulation results demonstrate the possibility of organizing the stable operation of the proposed hybrid 'fusion-fission' facility.

REACTOR PHYSICS CHALLENGES IN GEN-IV REACTOR DESIGN

  • DRISCOLL MICHAEL J.;HEJZLAR PAVEL
    • Nuclear Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • An overview of the reactor physics aspects of Generation Four(GEN-IV) advanced reactors is presented, emphasizing how their special requirements for enhanced sustainability, safety and ecoomics motivates consideration of features not thoroughly analyzed in the past. The resulting concept-specific requirements for better data and methods are surveyed, and some approaches and initiatives are suggested to meet the challenges faced by the international reactor physics community. No unresolvable impediments to successful development of any of the six major types of proposed reactors are identified, given appropriate and timely devotion of resources.

The Neutron Prospects After the Golden Anniversary of Its Discovery

  • Whittemore, W.L.
    • Nuclear Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.160-168
    • /
    • 1983
  • About 25 years ago, halfway along the recorded history of the neutron as a separate entity, Korea entered the nuclear age and initiated its own neutron research and development programs. Since that time Korean scientists have taken all possible advantages of the special opportunities offered by the neutron. Scientists the world over, in the Far East, hear East, and the West, have adapted these opportunities to their special needs. These needs are manifested in all phases of modern life, including power generation by nuclear means, food preservation, production of new types of food-bearing plants, commercial uses of activation analysis, irradiations, and isotope production, nuclear medicine, industrial quality control through nuclear measurements, and direct use of neutrons in research in many areas including solid state physics, chemistry, physics, biology, and medicine. Research with neutrons has been successfully conducted using nuclear research reactors of all sizes ranging from the very small (∼10 kilowatts) to the very large(50-100 Megawatts). This speaker has teen associated with nuclear research since 1945 and directly with neutron research since 1957. From this continuous research and development activity, he will report on some of the prospects in the second 50 years of the neutron.

  • PDF

A simple data assimilation method to improve atmospheric dispersion based on Lagrangian puff model

  • Li, Ke;Chen, Weihua;Liang, Manchun;Zhou, Jianqiu;Wang, Yunfu;He, Shuijun;Yang, Jie;Yang, Dandan;Shen, Hongmin;Wang, Xiangwei
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2377-2386
    • /
    • 2021
  • To model the atmospheric dispersion of radionuclides released from nuclear accident is very important for nuclear emergency. But the uncertainty of model parameters, such as source term and meteorological data, may significantly affect the prediction accuracy. Data assimilation (DA) is usually used to improve the model prediction with the measurements. The paper proposed a parameter bias transformation method combined with Lagrangian puff model to perform DA. The method uses the transformation of coordinates to approximate the effect of parameters bias. The uncertainty of four model parameters is considered in the paper: release rate, wind speed, wind direction and plume height. And particle swarm optimization is used for searching the optimal parameters. Twin experiment and Kincaid experiment are used to evaluate the performance of the proposed method. The results show that the proposed method can effectively increase the reliability of model prediction and estimate the parameters. It has the advantage of clear concept and simple calculation. It will be useful for improving the result of atmospheric dispersion model at the early stage of nuclear emergency.

Low beta superconducting cavity system design for HIAF iLinac

  • Mengxin Xu;Yuan He;Shengxue Zhang;Lubei Liu;Tiancai Jiang;Zehua Liang;Tong Liu;Yue Tao;Chunlong Li;Qitong Huang;Fengfeng Wang;Hao Guo;Feng Bai;Xianbo Xu;Shichun Huang;Xiaoli Li;Zhijun Wang;Shenghu Zhang;Jiancheng Yang;Evgeny Zaplatin
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2466-2473
    • /
    • 2023
  • A superconducting ion-Linac (iLinac), which is supposed to work as the injector in the High Intensity heavy-ion Accelerator Facility project, is under development at the Institute of Modern Physics (IMP), Chinese Academy of Sciences. The iLinac is a superconducting heavy ion linear accelerator approximately 100 meters long and contains 96 superconducting cavities in two types of 17 cyromodules. Two types of superconducting resonators (quarter-wave resonators with a frequency of 81.25 MHz and an optimal beta β = v/c = 0.07 called QWR007 and half-wave resonators with a frequency of 162.5 MHz and an optimal beta β = 0.15 called HWR015) have been investigated. The cavity design included extensive multi-parameter electromagnetic simulations and mechanical analysis, and its results are described in details. The fundamental power coupler and cavity dynamic tuner designs are also presented in this article. The prototypes are under manufacturing and expected to be ready in 2023.

Investigating creep behavior of Ni-Cr-W alloy pressurized tube at 950 ℃ by using in-situ creep testing system

  • Zhong, Yang;Lan, Kuan-Che;Lee, Hoon;Zhou, Bomou;Wang, Yong;Tsang, D.K.L.;Stubbins, James F.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1481-1485
    • /
    • 2020
  • The creep behavior of Ni-Cr-W alloy at 950 ℃ has been investigated by a novel creep testing system which is capable of in-situ measurement of strain. Tubular specimens were pressurized with argon gas for effective stresses up to 32 MPa. Experimental results show that the thermal fatigue reduces the creep life of the tubular specimens and with the introduction of thermal cycling fatigue the primary stage disappears and the creep rate higher than the pure thermal creep (without thermal fatigue). Also the creep behavior of Ni-Cr-W alloy doesn't consist in the secondary stage. A new creep equation has been derived and implemented into finite element method. The results from the finite element analyses are in good agreement with the creep experiment.

Hydrogen Behaviors with different introduction methods in SiC-C Films

  • Huang, N.K.;Zou, P.;Liu, J.R.;Zhang, L.
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.1-6
    • /
    • 2003
  • SiC-C films were deposited with r. f. magnetron sputtering on substrates followed by argon ion bombardment. These films were then permeated by hydrogen gas under the pressure of $3.23\times10^{7}$ Pa for 3 hours at temperature of 500K or bombarded with hydrogen ion beam at 5 keV and a dose of $1\times10^{18}$ ions/$\textrm{cm}^2$. SIMS, AES and XPS were used to analyze hydrogen related species, chemical bonding states of C, Si as well as contamination oxygen due to hydrogen participation in the SiC-C films in order to study the different behaviors of hydrogen in carbon-carbide films due to different hydrogen introduction. Related mechanism about the effects of hydrogen on the element of the SiC-C films was discussed in this paper.