• Title/Summary/Keyword: nuclear material

Search Result 1,864, Processing Time 0.023 seconds

Beryllium oxide utilized in nuclear reactors: Part I: Application history, thermal properties, mechanical properties, corrosion behavior and fabrication methods

  • Ming-dong Hou;Xiang-wen Zhou;Bing Liu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4393-4411
    • /
    • 2022
  • In recent years, beryllium oxide has been widely utilized in multiple compact nuclear reactors as the neutron moderator, the neutron reflector or the matrix material with dispersed nuclear fuels due to its prominent properties. In the past 70 years, beryllium oxide has been studied extensively, but rarely been systematically organized. This article provides a systematic review of the application history, thermal properties, mechanical properties, corrosion behavior and fabrication methods of beryllium oxide. Data from previous literature are extracted and sorted out, and all of these original data are attached as the supplementary material, so that subsequent researchers can utilize this paper as a database for beryllium oxide research in reactor design or simulation analysis, etc. In addition, this review article also attempts to point out the insufficiency of research on beryllium oxide, and the possible key research areas about beryllium oxide in the future.

Materials Properties of Nickel Electrodeposits as a Function of the Current Density, Duty Cycle, Temperature and pH

  • Kim, Dong-Jin;Kim, Myung Jin;Kim, Joung Soo;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.5 no.5
    • /
    • pp.168-172
    • /
    • 2006
  • Alloy 600 having a superior resistance to a corrosion is used as a steam generator tubing in nuclear power plants. In spite of its high corrosion resistance, there are many tubings which experience corrosion problems such as a SCC under the high temperature and high pressure environments of nuclear power plants. The Alloy 600 tubing can be repaired by using a Ni electroplating having an excellent SCC resistance. In order to carry out a successful Ni electrodeposition inside a steam generator tubing, the effects of various parameters on the material properties of the electrodeposit should be elucidated. Hence this work deals with the effects of an applied current density, duty cycle($T_{on}/(T_{on}+T_{off})$) of a pulse current, bath temperature and solution pH on the material properties of Ni electrodeposit obtained from a Ni sulphamate bath by analyzing the current efficiency, potentiodynamic curve, hardness and stress-strain curve. Hardness, YS(yield strength) and TS(tensile strength) decreased whereas the elongation increased as the applied current density increased. This was thought to be by a concentration depletion at the interface of the electrodeposit/solution, and a fractional decrease of the hydrogen reduction reaction. As the duty cycle increased, the hardness, YS and TS decreased while the elongation increased. During an off time at a high duty cycle, the concentration depletion could not be recovered sufficiently enough to induce a coarse grain sized electrodeposit. With an increase of the solution temperature and pH, the YS and TS increased while the elongation decreased. The experimental results of the hardness and the stress-strain curves can be supplemented by the results of the potentiodynamic curve.

Thermophysical, Hydrodynamic and Mechanical Aspects of Molten Core Relocation to Lower Plenum

  • Kune Y. Suh;Huh, Chang-Wook
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.707-712
    • /
    • 1997
  • This paper presents the current state of knowledge on molten material relocation into the lower plenum. Consequences of movement of material to the lower head are considered with regardt to the potential for reactor pressure vessel failure from both thermal hydraulic and mechanical standpoints. The models are applied to evaluating various in-vessel retention strategies for the Korean Standard power plant (KSNPP) reactor The results are summarized in terms of thermal response of the reactor vessel from the very relevant severe accident management perspective.

  • PDF

Evaluation on the buffer temperature by thermal conductivity of gap-filling material in a high-level radioactive waste repository

  • Seok Yoon;Min-Jun Kim ;Seeun Chang ;Gi-Jun Lee
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4005-4012
    • /
    • 2022
  • As high-level radioactive waste (HLW) generated from nuclear power plants is harmful to the human body, it must be safely disposed of by an engineered barrier system consisting of disposal canisters and buffer and backfill materials. A gap exists between the canister and buffer material in a HLW repository and between the buffer material and natural rock-this gap may reduce the water-blocking ability and heat transfer efficiency of the engineered barrier materials. Herein, the basic characteristics and thermal properties of granular bentonite, a candidate gap-filling material, were investigated, and their effects on the temperature change of the buffer material were analyzed numerically. Heat transfer by air conduction and convection in the gap were considered simultaneously. Moreover, by applying the Korean reference disposal system, changes in the properties of the buffer material were derived, and the basic design of the engineered barrier system was presented according to the gap filling material (GFM). The findings showed that a GFM with high initial thermal conductivity must be filled in the space between the buffer material and rock. Moreover, the target dry density of the buffer material varied according to the initial wet density, specific gravity, and water content values of the GFM.

A Study on the Determination of Density and Moisture Content of Asphalt Concrete Pavement and Subgrade Using Nuclear Density Meter (방사선측정치를 이용한 아스콘 포장 및 노상의 현장밀도와 함수비 측정에 관한 연구)

  • 진성기;도덕현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.4
    • /
    • pp.103-116
    • /
    • 1994
  • The objective of this study was to determine the criteria for density and moisture content measurements made with a nuclear density meter on common materials in the construction field. The study also sought to test a full-type nuclear density meter in controlling the density of overlay layers( 2.5~5.0cm). In order to determine the accuracy and reliablility of nuclear guage measurements made on construction materials, laboratory and field tests were conducted. Wooden blocks( 65 x 45 ${\times}$ 50 cm) and a special steel compactor( 4.7kg) were constructed in order to carry out tests which were conducted on three different materials; coarse gramed soil, fine grained soil, and AC material. Throughout all laboratory and field tests, the nuclear density and moisture content were determined using Humboldt 5OOLP nuclear gauge. The tests on subgrade material entailed obtaining density measurements by means of both the sand replacement method and the nuclear density meter. The results of the sand replacement method were then compared to the readings recorded bu the meter. As in the subgrade material tests, density measurements made during AC pavement tests were also determined using the unclear meter in addition to a second means; through the core method. The meter readings and core densties were compared as was done in the tests on subgrade materials. The correlation between the results of the sand replacement test( also, the core method) and meter readings on subgrade material was then determined. Sirnilarly, the observed results were then analyzed through linear regression. The tests to determine thin-lift density by means of a full-type nuclear density meter also conducted on the overlay layers( about 4. 8cm thickness) above AC pavements at road construction sities in Korea.

  • PDF

Neutron and gamma-ray energy reconstruction for characterization of special nuclear material

  • Clarke, Shaun D.;Hamel, Michael C.;Di fulvio, Angela;Pozzi, Sara A.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1354-1357
    • /
    • 2017
  • Characterization of special nuclear material may be performed using energy spectroscopy of either the neutron or gamma-ray emissions from the sample. Gamma-ray spectroscopy can be performed relatively easily using high-resolution semiconductors such as high-purity germanium. Neutron spectroscopy, by contrast, is a complex inverse problem. Here, results are presented for $^{252}Cf$ and PuBe energy spectra unfolded using a single EJ309 organic scintillator; excellent agreement is observed with the reference spectra. Neutron energy spectroscopy is also possible using a two-plane detector array, whereby time-of-flight kinematics can be used. With this system, energy spectra can also be obtained as a function of position. Spatial-dependent energy spectra are presented for neutron and gamma-ray sources that are in excellent agreement with expectations.

The Evaluation of Recovery Rate of Radioimmunoassay Using Certified Reference Material (CRM) (인증표준물질(CRM)을 이용한 방사면역측정법의 회수율 평가)

  • Choi, Sung Hee;Shin, Sun Young;Lim, So Hee;Hong, Mee Kyung;Noh, Gyeong Woon;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.158-162
    • /
    • 2014
  • Purpose: Reference material (RM) is defined as material that is safe and homogeneous enough about specified characteristic that is made with a purpose of using test of measurement or nominal characteristic. Certified reference material (CRM), which is issued by authorized organization, is defined as reference material that provides characteristic value, link uncertainty and retroactivity. The purpose of this paper was to evaluate recovery of radioimmunoassay by Certified Reference Material enclosed with a certificate and therefore to enhance reliability of test. Materials and Methods: WHO certified reference material is purchased from NIBSC (National Institute for Biological Standard and Control, United Kingdom) and made of 3 levels that are C-1 (low concentration), C-2 (medium concentration) and C-3 (high concentration) and measured for kit at the Seoul National University Hospital. Recovery rate is evaluated after measurement at four different days. Results: Recovery rate results using WHO certified reference material are T4 90%, Ferritin 88%, PSA 94%, Prolactin 99%, AFP 94% and TSH 93%. Conclusion: A procedure that appropriate accuracy, precision, specificity, sensitivity, reproducibility, and validate on the subject of kit for radioimmunoassay is essential. Recovery rate assay as extraction efficiency of analysis process is percent about already measuring results of analysis result after all measuring process. This is very important assessment standards of performance evaluation of immunoassay kit. Recovery rate results of 6 type used WHO CRM are satisfactory to 88~99%. This demonstrates that the radioimmunoassay is a very accurate measurement, which is very effectively utilized in clinical practice.

  • PDF

Corrosion behavior of aluminum alloy in simulated nuclear accident environments regarding the chemical effects in GSI-191

  • Da Wang ;Amanda Leong;Qiufeng Yang ;Jinsuo Zhang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4062-4071
    • /
    • 2022
  • Long-term aluminum (Al) corrosion tests were designed to investigate the condition that would generate severe Al corrosion and precipitation. Buffer agents of sodium tetraborate (NaTB), trisodium phosphate (TSP) and sodium hydroxide (NaOH) were adopted. The insulation materials, fiberglass and calcium silicate (Ca-sil), were examined to explore their effects on Al corrosion. The results show that significant precipitates were formed in both NaTB/TSP-buffered solutions at high pH. The precipitates formed in NaTB solution raise more concerns on chemical effects in GSI-191. A passivation layer formed on the surfaces of coupon in solution with the presence of insulations could effectively mitigate Al corrosion. The Fe-enriched intermetallic particles (IPs) embedded in coupon appeared to serve as seeds to readily induce precipitation via providing extra area for heterogeneous Al hydroxide precipitation. X-ray spectroscopy (EDS) and X-ray diffraction (XRD) analyses indicate that the precipitates are mainly boehmite (γ-AlOOH) and no direct evidence confirms the presence of sodium aluminum silicate or calcium phosphate.