• 제목/요약/키워드: nuclear lifetime

검색결과 175건 처리시간 0.025초

Performance assessment of HEPA filter against radioactive aerosols from metal cutting during nuclear decommissioning

  • Lee, Min-Ho;Yang, Wonseok;Chae, Nakkyu;Choi, Sungyeol
    • Nuclear Engineering and Technology
    • /
    • 제52권5호
    • /
    • pp.1043-1050
    • /
    • 2020
  • Radioactive aerosols are produced during the cutting of contaminated and activated metals. They must be collected and removed by a high-performing filtration system before releasing to the environment from the decommissioning workplace. The filtration system requires regular replacement to ensure the sufficient removal of radioactive aerosols because its filtration efficiency gradually decreases. This study evaluates the efficiency and lifetime of filters while cutting metals by using a plasma arc cutter. Particularly, this study considers the aerodynamic diameter distribution of number and mass concentrations for aerosols from 6 nm to 10 ㎛ when evaluating the performance of filters. After 20 time reuses for cutting operation performed in a cutting chamber, the removal efficiency is reduced from over 99 to below 93% at 2 ㎛. The results are used to analyze the lifetime of filters, the frequencies of their replacements, and impact on internal radiation dose.

Selection of burnable poison in plate fuel assembly for small modular marine reactors

  • Xu, Shikun;Yu, Tao;Xie, Jinsen;Li, Zhulun;Xia, Yi;Yao, Lei
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1526-1533
    • /
    • 2022
  • Small modular reactors have garnered considerable attention in the recent years. Plate fuel elements exhibit a good application prospect in small modular pressurized water reactors for marine applications. Further, improved economic benefits can be achieved by extending the core lifetime of small modular reactors. However, it is necessary to realize a large initial residual reactivity for achieving a relatively long burnup depth finally. Thus, the selection of a suitable burnable poison (BP) is a crucial factor that should be considered in the design of small modular reactors. In this study, some candidate BPs are selected to realize the effective control of reactivity. The results show that 231Pa2O3, 240Pu2O3, 167Er2O3, PACS-J, and PACS-L are ideal candidates of BP, and since the characteristics of BP can increase the final burnup depth of assembly, the economic benefits are gained. Additionally, an optimal combination scheme of BPs is established. Specifically, it is proved that through a reasonable combination of BPs, a low reactivity fluctuation during the lifetime can be achieved, leading to a large final burnup depth.

Assessment of Corrosion Lifetime of a Copper Disposal Canister Based on the Finnish Posiva Methodology

  • Choi, Heui-Joo;Lee, Jongyoul;Cho, Dongkeun
    • 방사성폐기물학회지
    • /
    • 제18권spc호
    • /
    • pp.51-62
    • /
    • 2020
  • In this paper, an approach developed by the Finnish nuclear waste management organization, Posiva, for the construction license of a geological repository was reviewed. Furthermore, a computer program based on the approach was developed. By using the computer program, the lifetime of a copper disposal canister, which was a key engineered barrier of the geological repository, was predicted under the KAERI Underground Research Tunnel (KURT) geologic conditions. The computer program was developed considering the mass transport of corroding agents, such as oxygen and sulfide, through the buffer and backfill. Shortly after the closure of the repository, the corrosion depths of a copper canister due to oxygen in the pores of the buffer and backfill were calculated. Additionally, the long-term corrosion of a copper canister due to sulfide was analyzed in two cases: intact buffer and eroded buffer. Under various conditions of the engineered barrier, the corrosion lifetimes of the copper canister due to sulfide significantly exceeded one million years. Finally, this study shows that it is necessary to carefully characterize the transmissivity of rock and sulfide concentration during site characterization to accurately predict the canister lifetime.

원전 케이블용 절연재료의 열분석과 등가수명 (Thermal Analysis and Equivalent Lifetime Prediction of Insulation Material for Nuclear Power Cable)

  • 김지연;양종석;박경흠;성백용;방정환;박대희
    • 한국전기전자재료학회논문지
    • /
    • 제29권1호
    • /
    • pp.17-22
    • /
    • 2016
  • The activation energy of a material is an important factor that significantly affects the lifetime and can be used to develop a degradation model. In this study, a thermal analysis was carried out to evaluate and collect quantitative data on the degradation of insulation materials like EPR and CSP used for nuclear power plant cables. The activation energy was determined from the relationship between log ${\beta}$ and 1/T based on the Flynn.Wall.Ozawa method, by a TGA test. The activation energy was also derived from the relationship between ln(t) and 1/T based on isothermal analysis, by an OIT test. The activation energy of EPR derived from thermal analysis was used to calculate the accelerated aging time corresponding to the number of years of use, employing the Arrhenius equation, and determine the elongation corresponding to the accelerated aging time.

Prompt neutron lifetime calculations for the NIRR-1 reactor

  • Ibrahim, Yakubu V.;Adeleye, Micheal O.;Njinga, Raymond L.;Odoi, Henry C.;Jonah, Sunday A.
    • Advances in Energy Research
    • /
    • 제3권2호
    • /
    • pp.125-131
    • /
    • 2015
  • Prompt neutron lifetime calculations have been performed for the NIRR-1 reactor HEU and LEU cores using the 1/v insertion and the Adjoint flux weighing methods. Results of calculations obtained for the HEU and LEU cores are respectively $57.3{\pm}0.8$ and $47.5{\pm}0.7$ for the 1/v insertion and $56.9{\pm}0.3$ and $46.3{\pm}0.5$ for the Adjoint flux. There is a good agreement seen between the two methods for both cores. The prompt neutron lifetime was observed to be shorter in the LEU than for the HEU as expected. However, the Adjoint flux weighing method seemed to be the easiest method in calculating the prompt neutron lifetime for NIRR-1.

Statistical analysis of parameter estimation of a probabilistic crack initiation model for Alloy 182 weld considering right-censored data and the covariate effect

  • Park, Jae Phil;Park, Chanseok;Oh, Young-Jin;Kim, Ji Hyun;Bahn, Chi Bum
    • Nuclear Engineering and Technology
    • /
    • 제50권1호
    • /
    • pp.107-115
    • /
    • 2018
  • To ensure the structural integrity of nuclear power plants, it is essential to predict the lifetime of Alloy 182 weld, which is used for welding in nuclear reactors. The lifetime of Alloy 182 weld is directly related to the crack initiation time. Owing to the large time scatter in most crack initiation tests, a probabilistic model, such as the Weibull distribution, has mainly been adopted for prediction. However, since statistically more advanced methods than current typical methods may be applied, we suggest a statistical procedure for parameter estimation of the crack initiation time of Alloy 182 weld, considering right-censored data and the covariate effect. Furthermore, we suggest a procedure for uncertainty evaluation of the estimators based on the bootstrap method. The suggested statistical procedure can be applied not only to Alloy 182 weld but also to any material degradation data set including right-censored data with covariate effect.

Stress and Fracture Analyses of Nuclear Power Plant LP Turbine Rotor Discs

  • Lee, Choon-Yeol;Kwon, Jae-Do;Chai, Young S.;Jang, Ki-Sang
    • Journal of Mechanical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.207-214
    • /
    • 2000
  • Fracture phenomenon has been reported on blades, rotors, connections and rotor discs of LP turbines of nuclear power plants, which is caused by fatigue, stress corrosion and erosion. In this study, as a tool of reliability evaluation, a number of stress and fracture analyses were performed on the defected area under various operating conditions using the finite element method. Possible defects on key-way and rotor disc were assumed to be two-dimensional cracks and centrifugal force, temperature distribution and shrink-fit effect were included as external loads. From stress analysis results, stress intensity factors were obtained and these values can be utilized to evaluate reliability and predict remaining lifetime of the turbine discs.

  • PDF