• Title/Summary/Keyword: nuclear equipment

Search Result 785, Processing Time 0.045 seconds

Development of Diesel Generator Excitation System in the Nuclear Power Plant (원전 비상디젤발전기 여자시스템 개발)

  • Shin, Man-Su;Ryu, Ho-Seon;Lee, Joo-Hyun;Im, Ik-Heon;Jeong, Tae-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.397-406
    • /
    • 2010
  • Because diesel generator excitation systems in the nuclear power generating station are included among safety related c1asses(and Class 1E), they have been supposed to apply in the nuclear power generating stations through equipment qualification by nuclear law and so on. So, they has been controlled and assured completely by quality assurance throughout the total development journey. This paper looks into the journey of development of diesel generator excitation systems in the nuclear power generating station.

Predictive Maintenance Plan based on Vibration Monitoring of Nuclear Power Plants using Industry 4.0 (4차 산업기술을 활용한 원전설비 진동감시기반 예측정비 방안)

  • Do-young Ko
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.1
    • /
    • pp.6-10
    • /
    • 2023
  • Only about 10% of selected equipment in nuclear power plants are monitored by wiring to address failures or problems caused by vibration. The purpose is primarily for preventive maintenance, not for predictive maintenance. This paper shows that vibration monitoring and diagnosis using Industrial 4.0 enables the complete predictive maintenance for all vibrating equipments in nuclear power plants with the convergence of internet of things; wireless technology, big data through periodic collection and artificial intelligence. Predictive maintenance using wireless technology is possible in all areas of nuclear power plants and in all systems, but it should satisfy regulatory guides on electromagnetic interference and cyber security.

Effect of slab stiffness on floor response spectrum and fragility of equipment in nuclear power plant building

  • Yousang Lee;Ju-Hyung Kim;Hong-Gun Park
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.3956-3972
    • /
    • 2023
  • The floor response spectrum (FRS) is used to evaluate the seismic demand of equipment installed in nuclear power plants. In the conventional design practice of NPP structure, the FRS is simplified using the lumped-mass stick model (LMSM), assuming the floor slab as a rigid diaphragm. In the present study, to study the variation of seismic response in a floor, the FRSs at different locations were generated by 3-D finite element model, and the response was compared to that of the rigid diaphragm model. The result showed that the FRS significantly varied due to the large opening in a floor, which was not captured by the rigid diaphragm model. Based on the result, seismic fragility analysis was performed for the anchorage of a heat exchanger, to investigate the effect of location-dependent FRS disparity on the high confidence low probability of failure (HCLPF).

Damage and vibrations of nuclear power plant buildings subjected to aircraft crash part I: Model test

  • Li, Z.R.;Li, Z.C.;Dong, Z.F.;Huang, T.;Lu, Y.G.;Rong, J.L.;Wu, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3068-3084
    • /
    • 2021
  • Investigations of large commercial aircraft impact effect on nuclear power plant (NPP) buildings have been drawing extensive attentions, particularly after the 9/11 event, and this paper aims to experimentally assess the damage and vibrations of NPP buildings subjected to aircraft crash. In present Part I, two shots of reduce-scaled model test of aircraft impacting on NPP building were carried out. Firstly, the 1:15 aircraft model (weighs 135 kg) and RC NPP model (weighs about 70 t) are designed and prepared. Then, based on the large rocket sled loading test platform, the aircraft models were accelerated to impact perpendicularly on the two sides of NPP model, i.e., containment and auxiliary buildings, with a velocity of about 170 m/s. The strain-time histories of rebars within the impact area and acceleration-time histories of each floor of NPP model are derived from the pre-arranged twenty-one strain gauges and twenty tri-axial accelerometers, and the whole impact processes were recorded by three high-speed cameras. The local penetration and perforation failure modes occurred respectively in the collision scenarios of containment and auxiliary buildings, and some suggestions for the NPP design are given. The maximum acceleration in the 1:15 scaled tests is 1785.73 g, and thus the corresponding maximum resultant acceleration in a prototype impact might be about 119 g, which poses a potential threat to the nuclear equipment. Furthermore, it was found that the nonlinear decrease of vibrations along the height was well reflected by the variations of both the maximum resultant vibrations and Cumulative Absolute Velocity (CAV). The present experimental work on the damage and dynamic responses of NPP structure under aircraft impact is firstly presented, which could provide a benchmark basis for further safety assessments of prototype NPP structure as well as inner systems and components against aircraft crash.