• Title/Summary/Keyword: nuclear containment structures

Search Result 86, Processing Time 0.023 seconds

Reliability Assessments and Design Load Factors for Reinforced Concrete Containment Structures of Nuclear Power Plant

  • Han, Bong-Koo
    • Nuclear Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.444-450
    • /
    • 1997
  • The current ASME code for reinforced concrete containment structures are not based on probability concepts. The stochastic nature of natural hazard or accidental loads and the variations of material properties require a probabilistic approach for a rational assessment of structural safety and performance. The paper develops design load factors for the serviceability limit state of reinforced concrete containment structures. The target limit state probability is determined and the load factors are calculated by the numerical analysis. Design load factors are proposed and carried out the reliability assessments.

  • PDF

Pretest analysis of a prestressed concrete containment 1:3.2 scale model under thermal-pressure coupling conditions

  • Qingyu Yang;Jiachuan Yan;Feng Fan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2069-2087
    • /
    • 2023
  • In nuclear power plant (NPP) accidents, the containment is subject to high temperatures and high internal pressures, which may further trigger serious chain accidents such as core meltdown and hydrogen explosion, resulting in a significantly higher accident level. Therefore, studying the mechanical performance of a containment under high temperature and high internal pressure is relevant to the safety of NPPs. Based on similarity principles, the 1:3.2 scale model of a prestressed concrete containment vessel (PCCV) of a NPP was designed. The loading method, which considers the thermal-pressure coupling conditions, was used. The mechanical response of the PCCV was investigated with a simultaneous increase in internal pressure and temperature, and the failure mechanism of the PCCV under thermal-pressure coupling conditions was revealed.

Experimental investigation and design method of the general anchorage zone in the ring beam of prestressed concrete containment vessels

  • Chang Wu;Tao Chen;Yanli Su;Tianyun Lan;Shaoping Meng
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.485-497
    • /
    • 2024
  • Ring beam is the main anchorage zone of the tendons in the nuclear power prestressed concrete containment vessel (PCCV). Its safety is crucial and has a great influence on the overall performance of PCCV. In this paper, two half-scale ring beams were tested to investigate the mechanical performance of the anchorage zone in the PCCV under multidirectional pressure. The effect of working condition with different tension sequences was investigated. Additionally, a half axisymmetric plane model of the containment was established by the finite element simulation to further predict the experimental responses and propose the local reinforcement design in the anchorage zone of the ring beam. The results showed that the ultimate load of the specimens under both working conditions was greater than the nominal ultimate tensile force. The original reinforcement design could meet the bearing capacity requirements, but there was still room for optimization. The ring beam was generally under pressure in the anchorage area, while the splitting force appeared in the under-anchor area, and the spalling force appeared in the corner area of the tooth block, which could be targeted for local strengthening design.

A study on the Reliability Analysis of Nuclear Steel Containment Structures Subject to Internal Pressure (내압을 받는 원전 강재격납건물의 신뢰성 해석)

  • 오병환;최성철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.229-232
    • /
    • 1999
  • Nuclear power plant structures may be exposed to aggressive environmental effects that may cause their damage mechanisms are reasonably well understood and quantitative evaluation of their effects on time-dependent structural behavior is possible in some instances, such evaluations are generally very difficult and remain novel. The assessment of existing steel containment in nuclear power plants for continued service must provide quantitative evidence that they are able to withstand future extreme loads during a service period with an acceptable level of reliability. Rational methodologies to perform the reliability assessment can be developed from mechanistic models of structural deterioration, using time-dependent structural reliability analysis to take loading and strength uncertainties into account. The final goal of this study is to develop the analysis method for the analysis for the reliability of containment structures. The cause and mechanism of corrosion is first clarified and the reliability assessment method has been established. By introducing the equivalent normal distribution, the procedure of reliability analysis which can determine the failure probabilities has been established.

  • PDF

Prediction of Prestressing Losses by Concrete Creep and Shrinkage (콘크리트 크리프 및 건조수축에 의한 프리스트레싱 손실량 예측)

  • 송영철;조명석;우상균;이태규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.649-655
    • /
    • 1998
  • In this study, the personal-computer program was developed to predict prestressing losses containment structures of Nuclear Power Plants by concrete creep and shrinkage. This program is constituted of three parts, which are pre-processor, calculation module and post-processor. Input data for his program are : material properties of concrete, rebar, liner and duct, test results of concrete creep and shrinkage, relative humidity, dimension of containment structures, and the number of prestressing tendon related on containment structures. To obtain better results, this program was made to reflect the prestressing losses due to influence that occurred after prestressing each tendon, thus it can predict prestressing losses and allowable prestressing forces of each tendon. As a case study, this program was applied to containment structures of Youngwang 3 & 4 NPP's and analytical result was compared with test results in In-service Inspection of containment structures. From this comparison, it was proved that this program could well predict prestressing losses by concrete creep and shrinkage.

  • PDF

Multi-Step Analysis of Seismically Isolated NPP Containment Structures with Lead-Rubber Bearings (납-고무받침에 의해 면진된 원전 격납구조물의 다중단계해석)

  • Lee, Jin Hi;Song, Jong-Keol;Lee, Eun-Haeng
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.261-269
    • /
    • 2014
  • In order to increase the seismic safety of nuclear power plant (NPP) structures in high seismicity regions, seismic isolation techniques can be adapted to NPP structures. In this paper, the applicability of multi-step analysis of seismically isolated NPP containment structures with lead-rubber bearings (LRB) is evaluated. The floor response spectrum of NPP containment structures with equivalent linear LRB and nonlinear LRB are compared. In addition, the force-displacement relationships for equivalent linear LRB and nonlinear LRB are compared.

CONTAINMENT PERFORMANCE EVALUATION OF PRESTRESSED CONCRETE CONTAINMENT VESSELS WITH FIBER REINFORCEMENT

  • CHOUN, YOUNG-SUN;PARK, HYUNG-KUI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.884-894
    • /
    • 2015
  • Background: Fibers in concrete resist the growth of cracks and enhance the postcracking behavior of structures. The addition of fibers into a conventional reinforced concrete can improve the structural and functional performance of safety-related concrete structures in nuclear power plants. Methods: The influence of fibers on the ultimate internal pressure capacity of a prestressed concrete containment vessel (PCCV) was investigated through a comparison of the ultimate pressure capacities between conventional and fiber-reinforced PCCVs. Steel and polyamide fibers were used. The tension behaviors of conventional concrete and fiber-reinforced concrete specimens were investigated through uniaxial tension tests and their tension-stiffening models were obtained. Results: For a PCCV reinforced with 1% volume hooked-end steel fiber, the ultimate pressure capacity increased by approximately 12% in comparison with that for a conventional PCCV. For a PCCV reinforced with 1.5% volume polyamide fiber, an increase of approximately 3% was estimated for the ultimate pressure capacity. Conclusion: The ultimate pressure capacity can be greatly improved by introducing steel and polyamide fibers in a conventional reinforced concrete. Steel fibers are more effective at enhancing the containment performance of a PCCV than polyamide fibers. The fiber reinforcementwas shown to bemore effective at a high pressure loading and a lowprestress level.

Crash analysis of military aircraft on nuclear containment

  • Sadique, M.R.;Iqbal, M.A.;Bhargava, P.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.73-87
    • /
    • 2015
  • In case of aircraft impact on nuclear containment structures, the initial kinetic energy of the aircraft is transferred and absorbed by the outer containment, may causing either complete or partial failure of containment structure. In the present study safety analysis of BWR Mark III type containment has been performed. The total height of containment is 67 m. It has a circular wall with monolithic dome of 21m diameter. Crash analysis has been performed for fighter jet Phantom F4. A normal hit at the crown of containment dome has been considered. Numerical simulations have been carried out using finite element code ABAQUS/Explicit. Concrete Damage Plasticity model have been incorporated to simulate the behaviour of concrete at high strain rate, while Johnson-Cook elasto-visco model of ductile metals have been used for steel reinforcement. Maximum deformation in the containment building has reported as 33.35 mm against crash of Phantom F4. Deformations in concrete and reinforcements have been localised to the impact region. Moreover, no significant global damage has been observed in structure. It may be concluded from the present study that at higher velocity of aircraft perforation of the structure may happen.

Time Dependent Reliability Analysis of the Degrading RC Containment Structures Subjected to Earthquake Load (지진하중을 받는 RC 격납건물의 열화에 따른 신뢰성 해석)

  • 오병환
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.233-240
    • /
    • 2000
  • Nuclear power plant structures may be exposed to aggressive environmental effects than may cause their strength and stiffness to decrease over their service lives, Although the physics of these damage mechanisms are reasonably well understood and quantitative evaluation of their effects on time-dependent structural behavior is possible in some instances such evaluations are generally very difficult and remain novel. The assessment of existing RC containment in nuclear power plants for continued service must provide quantitative evidence that they are able to withstand future extreme loads during a service period with an acceptable level of reliability. Rational methodologies to perform the reliability assessment can be developed from mechanistic models of structural deterioration using time-dependent structural reliability analysis to take earthquake loading uncertainties into account. The final goal of this study is to develop the reliability analysis of RC containment structures. The cause of the degrading is first clarified and the reliability assessment has been conducted. By introducing stochastic analysis based on random vibration theory the reliability analysis which can determine the failure probabilities has been established.

  • PDF