• Title/Summary/Keyword: nuclear containment

Search Result 502, Processing Time 0.024 seconds

COMBINED ANALYTICAL AND EXPERIMENTAL INVESTIGATIONS FOR LWR CONTAINMENT PHENOMENA

  • Allelein, Hans-Josef;Reinecke, Ernst-Arndt;Belt, Alexander;Broxtermann, Philipp;Kelm, Stephan
    • Nuclear Engineering and Technology
    • /
    • v.44 no.3
    • /
    • pp.249-260
    • /
    • 2012
  • Main focus of the combined nuclear research activities at Aachen University (RWTH) and the Research Center J$\ddot{u}$lich (J$\ddot{U}$LICH) is the experimental and analytical investigation of containment phenomena and processes. We are deeply convinced that reliable simulations for operation, design basis and beyond-design basis accidents of nuclear power plants need the application of so-called lumped-parameter (LP) based codes as well as computational fluid dynamics (CFD) codes in an indispensable manner. The LP code being used at our institutions is the GRS code COCOSYS and the CFD tool is ANSYS CFX mostly used in German nuclear research. Both codes are applied for safety analyses especially of beyond design accidents. Focal point of the work is containment thermal-hydraulics, but source term relevant investigations for aerosol and iodine behavior are performed as well. To increase the capability of COCOSYS and CFX detailed models for specific features, e.g. recombiner behavior including chimney effect, building condenser, and wall condensation are developed and validated against facilities at different scales. The close connection between analytical and experimental activities is notable and identifying feature of the RWTH/J$\ddot{U}$LICH activities.

Study of concrete de-bonding assessment technique for containment liner plates in nuclear power plants using ultrasonic guided wave approach

  • Lee, Yonghee;Yun, Hyunmin;Cho, Younho
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1221-1229
    • /
    • 2022
  • In this work, the guided wave de-bonding area-detecting technique was studied for application to containment liner plates in nuclear power plant areas. To apply this technique, an appropriate Lamb wave mode, symmetric and longitudinal dominance, was verified by the frequency shifting technique. The S0 2.7 MHz mm Lamb wave mode was chosen to realize quantitative experimental results and their visualization. Results of the bulk wave, longitudinal wave mode, and comparison experiments indicate that the wave mode was able to distinguish between the de-bonded and bonded areas. Similar to the bulk wave cases, the bonded region could be distinguished from the de-bonded region using the Lamb wave approach. The Lamb wave technique results showed significant correlation to the de-bonding area. As the de-bonding area increased, the Lamb wave energy attenuation effect decreased, which was a prominent factor in the realization of quantitative tomographic visualization. The feasibility of tomographic visualization was studied via the application of Lamb waves. The reconstruction algorithm for the probabilistic inspection of damage (RAPID) technique was applied to the containment liner plate to verify and visualize the de-bonding condition. The results obtained using the tomography image indicated that the Lamb wave-based RAPID algorithm was capable of delineating debonding areas.

A Study of the Evaporation Heat Transfer in Advanced Reactor Containment

  • Y. M. Kang;Park, G. C.
    • Nuclear Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.291-298
    • /
    • 1997
  • In advanced nuclear reactors, the passive containment cooling has been suggested to enhance the safety. The passive cooling has two mechanisms, air natural convection and oater cooling with evaporation. To confirm the coolability of PCCS, many works have been performed experimentally and numerically. In this study, the water cooling test was performed to obtain the evaporative heat transfer coefficients in a scaled don segment type PCCS facility which have same configuration with AP600 prototype containment. Air-steam mixture temperature and velocity, relative humidity and well heat flux are measured. The local steam mass flow rates through the vertical plate part of the facility are calculated from the measured data to obtain evaporative heat transfer coefficients. The measured evaporative heat transfer coefficients are compared with an analytical model which use a mass transfer coefficients. From the comparison, the predicted coefficients show good agreement with experimental data however, some discrepancies exist when the effect of wave motion is not considered. Finally, a new correlation on evaporative heat transfer coefficients are developed using the experimental values.

  • PDF

Realistic toch Containment Analysis Using A Merged Version of RELAP5/CONTEMPT4

  • Kwon, Young-Min;Lee, Ki-Young;Song, Jin-Ho
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.447-452
    • /
    • 1996
  • Realistic containment analyses for large LOCA using a merged torsion of RELAP5/CONTEMPT4 are conducted. Analyzed are Generic LOCA with respect to the mass and energy releases from the RCS and containment pressure and temperature behaviors. The break locations considered are the double-ended guillotine breaks at the RCP discharge and hot legs for UCN 3&4 plants. For discharge leg break. the predicted containment pressure and temperature reach a peak during blowdown phase, thereafter the pressure and temperature decrease gradually without the second reflood peak. For the hot leg break it is found that the bypass break flow through the broken steam generator-during post-blowdown is negligibly small so that the containment atmosphere is not pressurized after the end of blowdown.

  • PDF

A Large Dry PWR Containment Response Analysis for Postulated Severe Accidents (가상적 중대사고에 대한 대형건식 가압경수로 격납용기의 반응해석)

  • Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.19 no.4
    • /
    • pp.292-309
    • /
    • 1987
  • A large dry PWR containment response analysis for postulated severe accidents was performed as part of the Zion Risk Rebaselining study for input to the U.S. NRC's "Reactor Risk Reference Document," NUREG-1150. The Methodologies used in the present work were developed as part of the Severe Accident Risk Reduction Program (SARRP) at Sandia National Laboratory specifically for the Surry Plant, but they were extrapolated to Zion. Major steps of the quantification of risk from a nuclear power plant are first outlined. Then, the methodologies of containment response analysis for severe accidents used for Zion are described in detail: major features of the containment event tree (CET) analysis codes and CET quantification procedures are summarized. In addition, plant specific features important to containment response analysis are presented along with the containment loading and performance issues included in the present uncertainty analysis. Finally, a brief summary of the results of deterministic and statistical containment event tree analysis is presented to provide a perspective on the large dry PWR containment response for postulated severe accidents.accidents.

  • PDF

Effects of Condensation Heat Transfer Model in Calculation for KNGR Containment Pressure and Temperature Response

  • Eoh, Jae-Hyuk;Park, Shane;Jeun, Gyoo-Dong;Kim, Moo-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.241-253
    • /
    • 2001
  • Under severe accidents, the pressure and temperature response has an important role for the integrity of a nuclear power plant containment. The history of the pressure and temperature is characterized by the amount and state of steam/air mixture in a containment. Recently, the heat transfer rate to the structure surface is supposed to be increased by the wavy interface formed on condensate film. However, in the calculation by using CONTAIN code, the condensation heat transfer on a containment wall is calculated by assuming the smooth interface and has a tendency to be underestimated for safety. In order to obtain the best- estimate heat transfer calculation, we investigated the condensation heat transfer model in CONTAIN 1.2 code and adopted the new forced convection correlation which is considering wavy interface. By using the film tracking model in CONTAIN 1.2 code, the condensate film is treated to consider the effect of wavy interface. And also, it was carried out to investigate the effect of the different cell modelings - 5-cell and 10-cell modeling - for KNGR(Korean Next Generation Reactor) containment phenomena during a severe accident. The effect of wavy interface on condensate film appears to cause the decrease of peak temperature and pressure response . In order to obtain more adequate results, the proper cell modeling was required to consider the proper flow of steam/air mixture.

  • PDF

Realistic Large Break Loss of Coolant Accident Mass and Energy Release and Containment Pressure and Temperature Analyses

  • Kwon, Young-Min;Song, Jin-Ho
    • Nuclear Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.229-239
    • /
    • 1997
  • To investigate the realistic behavior of mass and energy release and resultant containment response during large break Loss of Coolant accident (LOCA), analyses are performed for Yonggwang (YGN) 3&4 nuclear power plants by using a merged version of RELAP5/CONTEMPT4 computer code. Comparative analyses by using conservative design computer codes are also peformed. The break types analyzed are the double-ended guillotine breaks at the cold leg and hot leg. The design analysis resulted in containment peak pressure during post-blowdown phase for the cold leg break. However, the RELAP5/CONTEMPT4 analyses show that the containment pressure has a peak during blowdown phase, thereafter it decreases monotonously without the second port-blowdown peak. For the hot leg break, revised design analysis shows much lower pressure than that reported in YGN 3&4 final safety analysis report. The RELAP5/CONTEMPT4 analysis shoos similar trend and confirmed that the bypass flow through the broken loop steam generator during post-blowdown is negligibly small compared to that of cold leg break. The low pressure and temperature predicted tv realistic analysis presented in this paper suggest that the design analysis methodology contains substantial margin and it can be improved to provide benefit in investment protection, such as, relaxing plant technical specifications and reducing containment design pressure.

  • PDF

THERMAL HYDRAULIC ISSUES OF CONTAINMENT FILTERED VENTING SYSTEM FOR A LONG OPERATING TIME

  • Na, Young Su;Ha, Kwang Soon;Park, Rae-Joon;Park, Jong-Hwa;Cho, Song-Won
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.797-802
    • /
    • 2014
  • This study investigated the thermal hydraulic issues in the Containment Filtered Venting System (CFVS) for a long operating time using the MELCOR computer code. The modeling of the CFVS, including the models for pool scrubbing and the filter, was added to the input file for the OPR-1000, and a Station Blackout (SBO) was chosen as an accident scenario. Although depressurization in the containment building as a primary objective of the CFVS was successful, the decontamination feature by scrubbing and filtering in the CFVS for a long operating time could fail by the continuous evaporation of the scrubbing solution. After the operation of the CFVS, the atmosphere temperature in the CFVS became slightly above the water saturation temperature owing to the release of an amount of steam with high temperature from the containment building to the scrubbing solution. Reduced pipe diameters at the inlet and outlet of the CFVS vessel mitigated the evaporation of scrubbing water by controlling the amount of high-temperature steam and the water saturation temperature.

CONTAINMENT PERFORMANCE EVALUATION OF PRESTRESSED CONCRETE CONTAINMENT VESSELS WITH FIBER REINFORCEMENT

  • CHOUN, YOUNG-SUN;PARK, HYUNG-KUI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.884-894
    • /
    • 2015
  • Background: Fibers in concrete resist the growth of cracks and enhance the postcracking behavior of structures. The addition of fibers into a conventional reinforced concrete can improve the structural and functional performance of safety-related concrete structures in nuclear power plants. Methods: The influence of fibers on the ultimate internal pressure capacity of a prestressed concrete containment vessel (PCCV) was investigated through a comparison of the ultimate pressure capacities between conventional and fiber-reinforced PCCVs. Steel and polyamide fibers were used. The tension behaviors of conventional concrete and fiber-reinforced concrete specimens were investigated through uniaxial tension tests and their tension-stiffening models were obtained. Results: For a PCCV reinforced with 1% volume hooked-end steel fiber, the ultimate pressure capacity increased by approximately 12% in comparison with that for a conventional PCCV. For a PCCV reinforced with 1.5% volume polyamide fiber, an increase of approximately 3% was estimated for the ultimate pressure capacity. Conclusion: The ultimate pressure capacity can be greatly improved by introducing steel and polyamide fibers in a conventional reinforced concrete. Steel fibers are more effective at enhancing the containment performance of a PCCV than polyamide fibers. The fiber reinforcementwas shown to bemore effective at a high pressure loading and a lowprestress level.

Seismic performance evaluation of fiber-reinforced prestressed concrete containments subject to earthquake ground motions

  • Xiaolan Pan;Ye Sun;Zhi Zheng;Yuchen Zhai;Lianpeng Zhang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1638-1653
    • /
    • 2024
  • Given the unpredictability of the occurrence of the earthquake and other potential disasters into consideration, the nuclear power plant may be confronted with beyond design-basis earthquake load in the future. The containment structure may be severely damaged under such severe earthquake loading, increasing the risk of containment concrete cracking and potential radioactive materials leaking. Moreover, initial damage caused by the earthquake may significantly alter the pressure performance of the containment under follow-up internal pressure. To compromise the dangers of beyond design-basis earthquake to the containment, an alternative of replacing the conventional concrete with fiber-reinforced concrete (FRC) to upgrade the seismic resistance capacity of the containment is attempted and thoroughly researched. In this study, the influence of various fiber types such as rigid fiber and mixed fiber is regarded to constitute fiber-reinforced PCCVs. The physical properties of traditional and fiber-reinforced PCCVs under earthquake ground motions are scientifically compared and identified by using traditional and proposed evaluation indices. The results indicate that both the traditional evaluation index (i.e. top displacement, stress, strain) and the proposed damage index are greatly reduced by the practice of fiber strengthening under earthquake ground motions.