• Title/Summary/Keyword: nuclear containment

Search Result 502, Processing Time 0.024 seconds

The Structural Integrity Test for a PSC Containment with Unbonded Tendons and Numerical Analysis II (비부착텐던 PSC 격납건물에 대한 구조건전성시험 및 수치해석 II)

  • Noh, Sanghoon;Jung, Raeyoung;Lee, Byungsoo;Lim, Sang-Jun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.535-542
    • /
    • 2015
  • A reactor containment acts as a final barrier to prevent leakage of radioactive material due to the possible reactor accidents into external environment. Because of the functional importance of the containment building, the SIT(Structural Integrity Test) for containments shall be performed to evaluate the structural acceptability and demonstrate the quality of construction. In this paper, numerical analyses are presented, which simulate the results obtained from the SIT for a prestressed concrete(PSC) structure. A sophisticate structural analysis model is developed to simulate the structural behavior during the SIT properly based on various preliminary analysis results considering contact condition among structural elements. From the comparison of the analysis and test results based on the acceptance criteria of ASME CC-6000, it can be concluded that the construction quality of the containment has been well maintained and the acceptable performance of new design features has been verified.

PROPOSAL FOR DUAL PRESSURIZED LIGHT WATER REACTOR UNIT PRODUCING 2000 MWE

  • Kang, Kyoung-Min;Noh, Sang-Woo;Suh, Kune-Yull
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1005-1014
    • /
    • 2009
  • The Dual Unit Optimizer 2000 MWe (DUO2000) is put forward as a new design concept for large power nuclear plants to cope with economic and safety challenges facing the $21^{st}$ century green and sustainable energy industry. DUO2000 is home to two nuclear steam supply systems (NSSSs) of the Optimized Power Reactor 1000 MWe (OPR1000)-like pressurized water reactor (PWR) in single containment so as to double the capacity of the plant. The idea behind DUO may as well be extended to combining any number of NSSSs of PWRs or pressurized heavy water reactors (PHWRs), or even boiling water reactors (BWRs). Once proven in water reactors, the technology may even be expanded to gas cooled, liquid metal cooled, and molten salt cooled reactors. With its in-vessel retention external reactor vessel cooling (IVR-ERVC) as severe accident management strategy, DUO can not only put the single most querulous PWR safety issue to an end, but also pave the way to very promising large power capacity while dispensing with the huge redesigning cost for Generation III+ nuclear systems. Five prototypes are presented for the DUO2000, and their respective advantages and drawbacks are considered. The strengths include, but are not necessarily limited to, reducing the cost of construction by decreasing the number of containment buildings from two to one, minimizing the cost of NSSS and control systems by sharing between the dual units, and lessening the maintenance cost by uniting the NSSS, just to name the few. The latent threats are discussed as well.

Investigation of Burst Pressures in PWR Primary Pressure Boundary Components

  • Namgung, Ihn;Giang, Nguyen Hoang
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.236-245
    • /
    • 2016
  • In a reactor coolant system of a nuclear power plant (NPP), an overpressure protection system keeps pressure in the loop within 110% of design pressure. However if the system does not work properly, pressure in the loop could elevate hugely in a short time. It would be seriously disastrous if a weak point in the pressure boundary component bursts and releases radioactive material within the containment; and it may lead to a leak outside the containment. In this study, a gross deformation that leads to a burst of pressure boundary components was investigated. Major components in the primary pressure boundary that is structurally important were selected based on structural mechanics, then, they were used to study the burst pressure of components by finite element method (FEM) analysis and by number of closed forms of theoretical relations. The burst pressure was also used as a metric of design optimization. It revealed which component was the weakest and which component had the highest margin to bursting failure. This information is valuable in severe accident progression prediction. The burst pressures of APR-1400, AP1000 and VVER-1000 reactor coolant systems were evaluated and compared to give relative margins of safety.

ANALYSIS OF PRESTRESSED CONCRETE CONTAINMENT VESSEL (PCCV) UNDER SEVERE ACCIDENT LOADING

  • Noh, Sang-Hoon;Moon, Il-Hwan;Lee, Jong-Bo;Kim, Jong-Hak
    • Nuclear Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.77-86
    • /
    • 2008
  • This paper describes the nonlinear analyses of a 1:4 scale model of a prestressed concrete containment vessel (PCCV) using an axisymmetric model and a three-dimensional model. These two models are refined by comparison of the analysis results and with testing results. This paper is especially focused on the analysis of behavior under pressure and the temperature effects revealed using an axisymmetric model. The temperature-dependent degradation properties of concrete and steel are considered. Both geometric and material nonlinearities, including thermal effects, are also addressed in the analyses. The Menetrey and Willam (1995) concrete constitutive model with non-associated flow potential is adopted for this study. This study includes the results of the predicted thermal and mechanical behaviors of the PCCV subject to high temperature loading and internal pressure at the same time. To find the effect of high temperature accident conditions on the ultimate capacity of the liner plate, reinforcement, prestressing tendon and concrete, two kinds of analyses are performed: one for pressure only and the other for pressure with temperature. The results from the test on pressurization, analysis for pressure only, and analyses considering pressure with temperatures are compared with one another. The analysis results show that the temperature directly affects the behavior of the liner plate, but has little impact on the ultimate pressure capacity of the PCCV.

Development of the structural health record of containment building in nuclear power plant

  • Chu, Shih-Yu;Kang, Chan-Jung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.2038-2045
    • /
    • 2021
  • The main objective of this work is to propose a reliable routine standard operation procedures (SOP) for structural health monitoring and diagnosis of nuclear power plants (NPPs). At present, NPPs have monitoring systems that can be used to obtain the quantitative health record of containment (CTMT) buildings through system identification technology. However, because the measurement signals are often interfered with by noise, the identification results may introduce erroneous conclusions if the measured data is directly adopted. Therefore, this paper recommends the SOP for signal screening and the required identification procedures to identify the dynamic characteristics of the CTMT of NPPs. In the SOP, three recommend methods are proposed including the Recursive Least Squares (RLS), the Observer Kalman Filter Identification/Eigensystem Realization Algorithm (OKID/ERA), and the Frequency Response Function (FRF). The identification results can be verified by comparing the results of different methods. Finally, a preliminary CTMT healthy record can be established based on the limited number of earthquake records. It can be served as the quantitative reference to expedite the restart procedure. If the fundamental frequency of the CTMT drops significantly after the Operating Basis Earthquake and Safe Shutdown Earthquake (OBE/SSE), it means that the restart actions suggested by the regulatory guide should be taken in place immediately.