• Title/Summary/Keyword: nuclear anomalies

Search Result 35, Processing Time 0.038 seconds

A Systems Engineering Approach to Multi-Physics Analysis of CEA Ejection Accident

  • Sebastian Grzegorz Dzien;Aya Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.2
    • /
    • pp.46-58
    • /
    • 2023
  • Deterministic safety analysis is a crucial part of safety assessment, particularly when it comes to demonstrating the safety of nuclear power plant designs. The traditional approach to deterministic safety analysis models is to model the nuclear core using point kinetics. However, this simplified approach does not fully reflect the real core behavior with proper moderator and fuel reactivity feedbacks during the transient. The use of Multi-Physics approach allows more precise simulation reflecting the inherent three-dimensionality (3D) of the problem by representing the detailed 3D core, with instantaneous updates of feedback mechanisms due to changes of important reactivity parameters like fuel temperature coefficient (FTC) and moderator temperature coefficient (MTC). This paper addresses a CEA ejection accident at hot full power (HFP), in which the underlying strong and un-symmetric feedback between thermal-hydraulics and reactor kinetics exist. For this purpose, a multi-physics analysis tool has been selected with the nodal kinetics code, 3DKIN, implicitly coupled to the thermal-hydraulic code, RELAP5, for real-time communication and data exchange. This coupled approach enables high fidelity three-dimensional simulation and is therefore especially relevant to reactivity initiated accident (RIA) scenarios and power distribution anomalies with strong feedback mechanisms and/or un-symmetrical characteristics as in the CEA ejection accident. The Systems Engineering approach is employed to provide guidance in developing the work in a systematic and efficient fashion.

APPLICATION OF FUZZY SET THEORY IN SAFEGUARDS

  • Fattah, A.;Nishiwaki, Y.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1051-1054
    • /
    • 1993
  • The International Atomic Energy Agency's Statute in Article III.A.5 allows it“to establish and administer safeguards designed to ensure that special fissionable and other materials, services, equipment, facilities and information made available by the Agency or at its request or under its supervision or control are not used in such a way as to further any military purpose; and to apply safeguards, at the request of the parties, to any bilateral or multilateral arrangement, or at the request of a State, to any of that State's activities in the field of atomic energy”. Safeguards are essentially a technical means of verifying the fulfilment of political obligations undertaken by States and given a legal force in international agreements relating to the peaceful uses of nuclear energy. The main political objectives are: to assure the international community that States are complying with their non-proliferation and other peaceful undertakings; and to deter (a) the diversion of afeguarded nuclear materials to the production of nuclear explosives or for military purposes and (b) the misuse of safeguarded facilities with the aim of producing unsafeguarded nuclear material. It is clear that no international safeguards system can physically prevent diversion. The IAEA safeguards system is basically a verification measure designed to provide assurance in those cases in which diversion has not occurred. Verification is accomplished by two basic means: material accountancy and containment and surveillance measures. Nuclear material accountancy is the fundamental IAEA safeguards mechanism, while containment and surveillance serve as important complementary measures. Material accountancy refers to a collection of measurements and other determinations which enable the State and the Agency to maintain a current picture of the location and movement of nuclear material into and out of material balance areas, i. e. areas where all material entering or leaving is measurab e. A containment measure is one that is designed by taking advantage of structural characteristics, such as containers, tanks or pipes, etc. To establish the physical integrity of an area or item by preventing the undetected movement of nuclear material or equipment. Such measures involve the application of tamper-indicating or surveillance devices. Surveillance refers to both human and instrumental observation aimed at indicating the movement of nuclear material. The verification process consists of three over-lapping elements: (a) Provision by the State of information such as - design information describing nuclear installations; - accounting reports listing nuclear material inventories, receipts and shipments; - documents amplifying and clarifying reports, as applicable; - notification of international transfers of nuclear material. (b) Collection by the IAEA of information through inspection activities such as - verification of design information - examination of records and repo ts - measurement of nuclear material - examination of containment and surveillance measures - follow-up activities in case of unusual findings. (c) Evaluation of the information provided by the State and of that collected by inspectors to determine the completeness, accuracy and validity of the information provided by the State and to resolve any anomalies and discrepancies. To design an effective verification system, one must identify possible ways and means by which nuclear material could be diverted from peaceful uses, including means to conceal such diversions. These theoretical ways and means, which have become known as diversion strategies, are used as one of the basic inputs for the development of safeguards procedures, equipment and instrumentation. For analysis of implementation strategy purposes, it is assumed that non-compliance cannot be excluded a priori and that consequently there is a low but non-zero probability that a diversion could be attempted in all safeguards ituations. An important element of diversion strategies is the identification of various possible diversion paths; the amount, type and location of nuclear material involved, the physical route and conversion of the material that may take place, rate of removal and concealment methods, as appropriate. With regard to the physical route and conversion of nuclear material the following main categories may be considered: - unreported removal of nuclear material from an installation or during transit - unreported introduction of nuclear material into an installation - unreported transfer of nuclear material from one material balance area to another - unreported production of nuclear material, e. g. enrichment of uranium or production of plutonium - undeclared uses of the material within the installation. With respect to the amount of nuclear material that might be diverted in a given time (the diversion rate), the continuum between the following two limiting cases is cons dered: - one significant quantity or more in a short time, often known as abrupt diversion; and - one significant quantity or more per year, for example, by accumulation of smaller amounts each time to add up to a significant quantity over a period of one year, often called protracted diversion. Concealment methods may include: - restriction of access of inspectors - falsification of records, reports and other material balance areas - replacement of nuclear material, e. g. use of dummy objects - falsification of measurements or of their evaluation - interference with IAEA installed equipment.As a result of diversion and its concealment or other actions, anomalies will occur. All reasonable diversion routes, scenarios/strategies and concealment methods have to be taken into account in designing safeguards implementation strategies so as to provide sufficient opportunities for the IAEA to observe such anomalies. The safeguards approach for each facility will make a different use of these procedures, equipment and instrumentation according to the various diversion strategies which could be applicable to that facility and according to the detection and inspection goals which are applied. Postulated pathways sets of scenarios comprise those elements of diversion strategies which might be carried out at a facility or across a State's fuel cycle with declared or undeclared activities. All such factors, however, contain a degree of fuzziness that need a human judgment to make the ultimate conclusion that all material is being used for peaceful purposes. Safeguards has been traditionally based on verification of declared material and facilities using material accountancy as a fundamental measure. The strength of material accountancy is based on the fact that it allows to detect any diversion independent of the diversion route taken. Material accountancy detects a diversion after it actually happened and thus is powerless to physically prevent it and can only deter by the risk of early detection any contemplation by State authorities to carry out a diversion. Recently the IAEA has been faced with new challenges. To deal with these, various measures are being reconsidered to strengthen the safeguards system such as enhanced assessment of the completeness of the State's initial declaration of nuclear material and installations under its jurisdiction enhanced monitoring and analysis of open information and analysis of open information that may indicate inconsistencies with the State's safeguards obligations. Precise information vital for such enhanced assessments and analyses is normally not available or, if available, difficult and expensive collection of information would be necessary. Above all, realistic appraisal of truth needs sound human judgment.

  • PDF

INTEGRATED DIAGNOSTIC TECHNIQUE FOR NUCLEAR POWER PLANTS

  • Gofuku, Akio
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.725-736
    • /
    • 2014
  • It is very important to detect and identify small anomalies and component failures for the safe operation of complex and large-scale artifacts such as nuclear power plants. Each diagnostic technique has its own advantages and limitations. These facts inspire us not only to enhance the capability of diagnostic techniques but also to integrate the results of diagnostic subsystems in order to obtain more accurate diagnostic results. The article describes the outline of four diagnostic techniques developed for the condition monitoring of the fast breeder reactor "Monju". The techniques are (1) estimation technique of important state variables based on a physical model of the component, (2) a state identification technique by non-linear discrimination function applying SVM (Support Vector Machine), (3) a diagnostic technique applying WT (Wavelet Transformation) to detect changes in the characteristics of measurement signals, and (4) a state identification technique effectively using past cases. In addition, a hybrid diagnostic system in which a final diagnostic result is given by integrating the results from subsystems is introduced, where two sets of values called confidence values and trust values are used. A technique to determine the trust value is investigated under the condition that the confidence value is determined by each subsystem.

Development of a method for securing the operator's situation awareness from manipulation attacks on NPP process data

  • Lee, Chanyoung;Song, Jae Gu;Lee, Cheol Kwon;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2011-2022
    • /
    • 2022
  • According to the defense-in-depth concept, not only a preventive strategy but also an integrated cyberattack response strategy for NPPs should be established. However, there are limitations in terms of responding to penetrations, and the existing EOPs are insufficient for responding to intentional disruptions. In this study, we focus on manipulative attacks on process data. Based on an analysis of the related attack vectors and possible attack scenarios, we adopt the Kalman filter to detect process anomalies that can be caused by manipulations of process data. To compensate for these manipulations and secure MCR operators' situational awareness, we modify the Kalman filter such that it can filter out the effects of the manipulations adaptively. A case study was conducted using a hardware-in-the-loop system. The results indicated that the developed method can be used to verify whether the displayed safety-related state data are reliable and to implement the required safety response actions.

The Barium Star HD204075: Iron Abundance and the Absence of Evidence for Accretion

  • Jeong, Yeuncheol;Yushchenko, Alexander;Gopka, Vira;Yushchenko, Volodymyr;Rittipruk, Pakakaew;Jeong, Kyung Sook;Demessinova, Aizat
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.105-113
    • /
    • 2019
  • Spectroscopic observations of barium star ${\zeta}$ Capricornus (HD204075) obtained at the 8.2 m telescope of the European Southern Observatory, with a spectral resolving power R = 80,000 and signal to noise ratio greater than 300, were used to refine the atmospheric parameters. We found new values for effective temperature ($T_{eff}=5,300{\pm}50K$), surface gravity ($log\;g=1.82{\pm}0.15$), micro-turbulent velocity ($v_{micro}=2.52{\pm}0.10km/s$), and iron abundance ($log\;N(Fe)=7.32{\pm}0.06$). Previously published abundances of chemical elements in the atmosphere of HD204075 were analyzed and no correlations of these abundances with the second ionization potentials of these elements were found. This excludes the possible influence of accretion of hydrogen and helium atoms from the interstellar or circumstellar environment to the atmosphere of this star. The accretion of nuclear processed matter from the evolved binary companion was primary cause of the abundance anomalies. The young age of HD204075 allows an estimation of the time-scale for the creation of the abundance anomalies arising from accretion of interstellar hydrogen and helium as is the case of stars with low magnetic fields; which we estimate should exceed $10^8$ years.

Development of deep autoencoder-based anomaly detection system for HANARO

  • Seunghyoung Ryu;Byoungil Jeon ;Hogeon Seo ;Minwoo Lee;Jin-Won Shin;Yonggyun Yu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.475-483
    • /
    • 2023
  • The high-flux advanced neutron application reactor (HANARO) is a multi-purpose research reactor at the Korea Atomic Energy Research Institute (KAERI). HANARO has been used in scientific and industrial research and developments. Therefore, stable operation is necessary for national science and industrial prospects. This study proposed an anomaly detection system based on deep learning, that supports the stable operation of HANARO. The proposed system collects multiple sensor data, displays system information, analyzes status, and performs anomaly detection using deep autoencoder. The system comprises communication, visualization, and anomaly-detection modules, and the prototype system is implemented on site in 2021. Finally, an analysis of the historical data and synthetic anomalies was conducted to verify the overall system; simulation results based on the historical data show that 12 cases out of 19 abnormal events can be detected in advance or on time by the deep learning AD model.

A Systems Engineering Approach to Multi-Physics Analysis of a CEA Withdrawal Accident

  • Jan, Hruskovic;Kajetan Andrzej, Rey;Aya, Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.2
    • /
    • pp.58-74
    • /
    • 2022
  • Deterministic accident analysis plays a central role in the nuclear power plant (NPP) safety evaluation and licensing process. Traditionally the conservative approach opted for the point kinetics model, expressing the reactor core parameters in the form of reactivity and power tables. However, with the current advances in computational power, high fidelity multi-physics simulations using real-time code coupling, can provide more detailed core behavior and hence more realistic plant's response. This is particularly relevant for transients where the core is undergoing reactivity anomalies and uneven power distributions with strong feedback mechanisms, such as reactivity initiated accidents (RIAs). This work addresses a RIA, specifically a control element assembly (CEA) withdrawal at power, using the multi-physics analysis tool RELAP5/MOD 3.4/3DKIN. The thermal-hydraulics (TH) code, RELAP5, is internally coupled with the nodal kinetics (NK) code, 3DKIN, and both codes exchange relevant data to model the nuclear power plant (NPP) response as the CEA is withdrawn from the core. The coupled model is more representative of the complex interactions between the thermal-hydraulics and neutronics; therefore the results obtained using a multi-physics simulation provide a larger safety margin and hence more operational flexibility compared to those of the point kinetics model reported in the safety analysis report for APR1400. The systems engineering approach is used to guide the development of the work ensuring a systematic and more efficient execution.

Boundary estimation in electrical impedance tomography with multi-layer neural networks.

  • Kim, J.H.;Jeon, H.J.;Choi, B.Y.;Kim, M.C.;Kim, S.;Kim, K.Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.553-558
    • /
    • 2003
  • The boundary estimation problem is used to estimate the shape of organic depend on the phase of the cardiac cycle or interested in the detection of the location and size of anomalies with resistivity values different from the background tissues such as nuclear reactor. And we can use the method to solve the optimal solution such as modified Newton raphson, kalman filter, extended kalman filter, etc. But, this method consumes much time and is sensitive to the initial value and noise in the estimation of the unknown shape. In the paper, we propose that multi-layer neural networks estimate the boundary of the unknown object using Fourier coefficient. This method can be used at the real time estimation and have strong characteristics at the noise and initial value. It uses voltage change; difference the homogeneous voltage to the non-homogeneous voltage, and change of Fourier coefficient change to train multi-layer neural network. After train, we can have real time estimation using this method.

  • PDF

Equivalency Assessment for an Eddy Current System Used for Steam Generator Tubing Inspection

  • Cho, Chan-Hee;Lee, Tae-Hun;Yoo, Hyun-Ju;Moon, Gyoon-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.4
    • /
    • pp.258-267
    • /
    • 2015
  • Eddy current testing is widely used for inspecting steam generator tubing in nuclear power plants (NPPs). The inspection technique for steam generator tubing in NPPs should be qualified in accordance with examination guidelines. When the components of a qualified system such as eddy current tester, probe, and data analysis program, are changed, the equivalency of the modified system to the originally qualified system must be verified. The eddy current tester is the most important part of an eddy current testing system because it excites and transmits alternating currents to the probe, receives coil impedance of the probe and generates signals for anomalies. The Korea Hydro & Nuclear Power Co., Ltd. (KHNP) developed an eddy current testing system with an eddy current tester and data acquisition-analysis program for inspecting the steam generator tubing in NPPs; this system can be used for an array probe and as a bobbin and rotating probes. The equivalency assessment for the currently developed system was carried out, and we describe the results in this paper.

Intelligent Nuclear Material Surveillance System for DUPIC Facility (DUPIC 시설의 지능형 핵물질 감시시스템)

  • 송대용;이상윤;하장호;고원일;김호동
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.406-410
    • /
    • 2003
  • DUPIC Fuel Development Facility(DFDF) is the facility to fabricate CANDU-type fuel from spent PWR fuel material without any separation of fissile elements and fission products. Unattended continuous surveillance systems for safeguards of nuclear facility result in large amounts of image and radiation data, which require much time and effort to inspect. Therefore, it is necessary to develop system that automatically pinpoints and diagnoses the anomalies from data. In this regards, this paper presents a novel concept of the continuous surveillance system that integrates visual image and radiation data by the use of neural networks. This surveillance system is operating for safeguards of the DFDF in KAERI.

  • PDF