• Title/Summary/Keyword: npgA

Search Result 59, Processing Time 0.023 seconds

Characterization of alkaline cellulase from Bacillus subtilis 4-1 isolated from Korean traditional soybean paste (전통 장류에서 분리된 알칼리성 Cellulase 생성 Bacillus subtilis 4-1 균주의 효소학적 특성)

  • Baek, Seong Yeol;Lee, You Jung;Yun, Hye Ju;Park, Hye Young;Yeo, Soo-Hwan
    • Food Science and Preservation
    • /
    • v.21 no.3
    • /
    • pp.442-450
    • /
    • 2014
  • In this study, we isolated a cellulase-producing bacterium isolated from traditional Korean fermented soybean paste and investigated the effect of culture conditions on the production of cellulase. This bacterium, which was identified as Bacillus subtilis 4-1 through 16S rRNA gene sequence analysis, showed the highest cellulase activity when the cells were grown at $45^{\circ}C$ for 24 hours in the CMC medium supplemented with 1.0% of soluble starch and 0.1% yeast extract. The initial optimum pH of the medium was observed in the range of 5.0~9.0. The optimal pH and temperature for the production of cellulase from B. subtilis 4-1 were pH 9.0 and $60^{\circ}C$ respectively. In addition, the enzyme showed significant activity in the temperature range of $20{\sim}90^{\circ}C$, which indicates that B. subtilis 4-1 cellulase is an alkaline-resistance and thermo-stable enzyme. This enzyme showed higher activity with CMC as the substrate for endo-type cellulase than avicel or pNPG as the exo-type substrates for exo-type cellulase and ${\beta}$-glucosidase. These results suggest that the cellulase produced from B. subtilis 4-1 is a complex enzyme rather than a mono-enzyme.

Cloning and Identification of Essential Residues for Thermostable β-glucosidase (BgIB) from Thermotoga maritima (Thermotoga maritima로부터 고온성 β-glucosidase (BgIB)의 클로닝과 필수아미노산 잔기의 확인)

  • Hong, Su-Young;Cho, Kye-Man;Kim, Yong-Hee;Hong, Sun-Joo;Cho, Soo-Jeong;Cho, Yong-Un;Kim, Hoon;Yun, Han-Dae
    • Journal of Life Science
    • /
    • v.16 no.7 s.80
    • /
    • pp.1148-1157
    • /
    • 2006
  • A hyperthermophilic bacterium Thernotoga maritima produced thermostable ${\beta}-glucosidase$. The gene encoding ${\beta}-glucosidase$ from T. maritima MSB8 was cloned and expressed in Escherichia coli. The en-zyme (BgIB) hydrolyzed ${\beta}-glucosidase$ linkages between glucose and alkyl, aryl of saccharide groups such as salicin, arbutin, and $_pNPG$. The insert DNA contained ORF with 2,166 bp encodes a 721 amino acids (calculated molecular mass of 80,964 and pl of 4.93). The amino a.id sequence of BglB showed the similarity to family 3 glycosyl hydrolases. The molecular weight of the enzyme was estimated to be approximately 81kDa by MUG-nondenaturing PAGE (4-methylumbelliferyl 13-D-glucoside-nondenaturing polyacrylamide gel electophoresis) and SDS-PACE. The ${\beta}-glucosidase$ exhibited maximal activity at pH 7.0 and $80^{\circ}C$. By exchanging two possible residues (Glu-232 and Asp-242) to Ala by site-directed mutagenesis method, it was found that these were essential for enzymatic activity.

Improvement of conception rate on Hanwoo; The key hormones and novel estrus detector

  • Joo, Young Ho;Jeong, Seung Min;Paradhipta, Dimas Hand Vidya;Lee, Hyuk Jun;Lee, Seong Shin;Choi, Jeong Seok;Noh, Hyeon Tak;Chang, Hong Hee;Kim, Eun Joong;Kim, Sam Churl
    • Journal of Animal Science and Technology
    • /
    • v.63 no.6
    • /
    • pp.1265-1274
    • /
    • 2021
  • Two field experiments were conducted to improve the conception rate of Hanwoo cow. The first experiment aimed to investigate the physiological condition of Hanwoo cows on estrus, including metabolic profiles and body condition score (BCS). The second experiment investigated the effect of a novel estrus detector on the artificial insemination (AI) conception rate for Hanwoo cows. For the first experiment, 80 Hanwoo cows (2.5 ± 0.10 of parity), approximately one month before estrus, were housed in 16 pens and offered the experimental diets twice daily with free water access. The BCS were recorded, and blood was collected from the jugular veins just before AI. The collected blood was used to measure physiological conditions, such as metabolite and hormone levels. For the second experiment, each cow was equipped with a neck-mounted estrus detector collar, which had a sensor connected through the internet. Approximately one month before estrus, three hundred sixty Hanwoo cows (2.4 ± 0.21 of parity) were assigned into groups with or without W-Tag collar treatments. The animals were managed the same as in the first experiment. The pregnancy rate reached 55% in the first experiment. The concentration of luteinizing hormone (LH) was higher (p < 0.012; 1.56 vs. 1.08 ng/mL) in cows that were not pregnant (NPG) than in cows that were pregnant (PG) after AI. The BCS and other concentrations of metabolites and hormones in the blood were not different in both NPG and PG cows. The ranges of estrogen, LH, and follicle-stimulating hormone for PG cows were 11.9 to 39.0 pg/mL, < 0.25 to 1.98 ng/mL, and < 0.50 to 0.82 ng/mL, respectively. In the second experiment, cows with the estrus detector had lower days open (p < 0.001; 78.1 vs. 84.8 d), insemination frequency (p < 0.001; 1.26 vs. 2.52), and return of estrus (p < 0.001; 70.9 vs. 79.1 d) than those in cows without the estrus detector. In conclusion, the present study indicated that lower LH concentration just before AI potentially increased the pregnancy rate of Hanwoo cows. Furthermore, the application of estrus detectors to Hanwoo cows could improve the conception success rate for AI.

Purification and Characterization of Extracellular $\beta$-Glucosidase from Sinorhizobium kostiense AFK-13 and Its Algal Lytic Effect on Anabaena flos-aquae

  • Kim, Jeong-Dong;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.745-752
    • /
    • 2007
  • A $\beta$-glucosidase from the algal lytic bacterium Sinorhizobium kostiense AFK-13, grown in complex media containing cellobiose, was purified to homogeneity by successive ammonium sulfate precipitation, and anion-exchange and gel-filtration chromatographies. The enzyme was shown to be a monomeric protein with an apparent molecular mass of 52 kDa and isoelectric point of approximately 5.4. It was optimally active at pH 6.0 and $40^{\circ}C$ and possessed a specific activity of 260.4 U/mg of protein against $4-nitrophenyl-\beta-D-glucopyranoside$(pNPG). A temperature-stability analysis demonstrated that the enzyme was unstable at $50^{\circ}C$ and above. The enzyme did not require divalent cations for activity, and its activity was significantly suppressed by $Hg^{+2}\;and\;Ag^+$, whereas sodium dodecyl sulfate(SDS) and Triton X-100 moderately inhibited the enzyme to under 70% of its initial activity. In an algal lytic activity analysis, the growth of cyanobacteria, such as Anabaena flos-aquae, A. cylindrica, A. macrospora, Oscillatoria sancta, and Microcystis aeruginosa, was strongly inhibited by a treatment of 20 ppm/disc or 30 ppm/disc concentration of the enzyme.

Preparation of PET Using Homogeneous Catalysts. II. Effect of BHPP, NPG and PD in $Sb_2$$O_3$ Glycol Solution Catalysts

  • Son, Tae-Won;Son, Hae-Shik;Kim, Won-Ki;Lee, Dong-Won;Kim, Kwang-Il;Jeong, Jae-Hun
    • Fibers and Polymers
    • /
    • v.1 no.1
    • /
    • pp.6-11
    • /
    • 2000
  • In the polycondensation reaction of polyethyleneterephthalate(PET), $Sb_2$$O_3$, can react effectively as a catalyst, if physically transformed. $Sb_2$$O_3$ powder is transformed into liquid solution by dissolving in ethylene glycol(EG). Homogeneous catalyst is made by mixing this liquid solution with glycols having different solubility. The efficient reaction of PET polymerization is expected by using homogeneous catalyst. PET was synthesized using homogeneous catalysts of 4 wt.% $Sb_2$$O_3$ solution dissolved in glycol[EG, 2,2-bis(4-(2-hydroxyethoxy)phenol)propane(BHPP), neopentyl glycol(NPO), and 1,3-propandiol(PD)]. PET using EG-BHPP($Sb_2$$O_3$) catalysts shows the highest I.V. within a reaction time of 120 min. In the p-d analysis, PET using EG-BHPP($Sb_2$$O_3$) catalysts has the fastest propagation rate and slowest degradation rate. EG-BHPP($Sb_2$$O_3$) catalysts are more efficient than EG($Sb_2$$O_3$) catalysts and $Sb_2$$O_3$ powder catalysts.

  • PDF

Purification and Characterization of a Bacillus sp. DG0303 Thermostable $\alpha$-Glucosidase with Oligo-l,6-glucosidase Activity

  • Park, Jong-Sung;Kim, Il-Han;Lee, Yong-Eok
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.3
    • /
    • pp.270-276
    • /
    • 1998
  • Extracellular ${\alpha}$-glucosidase was purified to homogeneity from moderately thermophilic Bacillus sp. DG0303. The thermostable ${\alpha}$-glucosidase was purified by ammonium sulfate fractionation, ion-exchange chromatography, preparative polyacrylamide gel electrophoresis (PAGE), and electroelution. The molecular weight of the enzyme was estimated to be 60 kDa by SDS-PAGE. The optimum temperature for the action of the enzyme was at $60^{\circ}C$. It had a half-life of 35 min at $60^{\circ}C$. The enzyme was stable at the pH range of 4.5~7.0 and had an optimum pH at 5.0. The enzyme preparation did not require any metal ion for activity. The thermostable ${\alpha}$-glucosidase hydrolyzed the ${\alpha}$-1,6-linkages in isomaltose, isomaltotriose, and panose, and had little or no activity with maltooligosaccharides and other polysaccharides. The $K_m$ (mM) for p-nitrophenyl-${\alpha}$-D-glucopyranoside (pNPG), panose, isomaltose, and isomaltotriose were 4.6, 4.7, 40.8, and 3.7 and the $V_{max}$(${\mu}mol{\cdot}min^-1$$mg^-1$) for those substrates were 5629, 1669, 3410, and 1827, respectively. The N-terminal amino acid sequence of the enzyme was MERVWWKKAV. Based on its substrate specificity and catalytic properties, the enzyme has been assigned to be an oligo-1,6-glucosidase.

  • PDF

Purification and Characterization of Beta-Glucosidase from Weissella cibaria 37

  • Lee, Kang Wook;Han, Nam Soo;Kim, Jeong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1705-1713
    • /
    • 2012
  • A gene encoding ${\beta}$-glucosidase was cloned from Weissella cibaria 37, an isolate from human feces. Sequence analysis showed that the gene could encode a protein of 415 amino acids in length, and the translated amino acid sequence showed homology (34-31%) with glycosyl hydrolase family 1 ${\beta}$-glucosidases. The gene was overexpressed in E. coli BL21(DE3) using pET26b(+) and a 50 kDa protein was overproduced, which matched well with the calculated size of the enzyme, 49,950.87 Da. Recombinant ${\beta}$-glucosidase was purified by using a his-tag affinity column. The purified ${\beta}$-glucosidase had an optimum pH and a temperature of 5.5 and $45^{\circ}C$, respectively. Among the metal ions (5mM concentration), $Ca^{2+}$ slightly increased the activity (108.2%) whereas $Cu^{2+}$ (46.1%) and $Zn^{2+}$ (56.7%) reduced the activity. Among the enzyme inhibitors (1 mM concentration), SDS was the strongest inhibitor (16.9%), followed by pepstatin A (45.2%). The $K_m$ and $V_{max}$ values of purified enzyme were 4.04 mM and 0.92 ${\mu}mol/min$, respectively, when assayed using pNPG (p-nitrophenyl-${\beta}$-D-glucopyranoside) as the substrate. The enzyme liberated reducing sugars from carboxymethyl cellulose (CMC).

Synthesis of Polyurethane/Epoxy Hybrid Resin used for Damper of Loudspeaker (스피커용 댐퍼에 사용되는 폴리우레탄/에폭시 하이브리드 수지의 합성)

  • Choi, Hyun-Seuk;Choi, Dong-Ho;Huh, Man-Woo
    • Textile Coloration and Finishing
    • /
    • v.28 no.1
    • /
    • pp.40-47
    • /
    • 2016
  • As a coating material for loudspeaker dampers, resilient polyurethane/epoxy hybrid resins were synthesized to replace conventional phenol resin and examined the physical properties, which are not only environmentally friendly but also not harmful to human. Five types of polyurethane resins were synthesized in the step-shot method using methylene diisocyanate, three polyols such as poly tetramethylene ether glycol(PTMEG, MW:2000), poly(1,4-buthylene adipate(PBAP, MW:2000), and poly carbonatediol(PCD, MW:2000), and three chain extenders such as ethylene glycol(EG), neopentyl glycol(NPG), and 1,4-buthandiol(1,4-BD). The five types of synthesized polyurethane resins and commercially available bisphenol A type epoxy resin were blended in weight ratios of 90:10, 70:30, and 50:50 to synthesize 15 types of polyurethane/epoxy hybrid resins. Among the polyurethane resins, the one that was synthesized using PCD and 1,4-BD showed excellent tensile strength, 100% modulus, low extension, and relatively high viscosity. Polyurethane/epoxy hybrid resins with higher epoxy resin contents showed better thermal properties and water resistance while those with higher polyurethane contents showed higher flexibility. The polyurethane/epoxy hybrid resin made by blending the polyurethane based on PCD and 1,4-BD with a bisphenol A type epoxy resin in a weight ratio of 70:30 was identified to be the most suitable to be used in speaker dampers.

Purification and Characterization of an Extracellular ${\beta}$-Glucosidase Produced by Phoma sp. KCTC11825BP Isolated from Rotten Mandarin Peel

  • Choi, Jung-Youn;Park, Ah-Reum;Kim, Yong-Jin;Kim, Jae-Jin;Cha, Chang-Jun;Yoon, Jeong-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.5
    • /
    • pp.503-508
    • /
    • 2011
  • A ${\beta}$-glucosidase from Phoma sp. KCTC11825BP isolated from rotten mandarin peel was purified 8.5-fold with a specific activity of 84.5 U/mg protein. The purified enzyme had a molecular mass of 440 kDa with a subunit of 110 kDa. The partial amino acid sequence of the purified ${\beta}$-glucosidase evidenced high homology with the fungal ${\beta}$- glucosidases belonging to glycosyl hydrolase family 3. Its optimal activity was detected at pH 4.5 and $60^{\circ}C$, and the enzyme had a half-life of 53 h at $60^{\circ}C$. The $K_m$ values for p-nitrophenyl-${\beta}$-D-glucopyranoside and cellobiose were 0.3 mM and 3.2 mM, respectively. The enzyme was competitively inhibited by both glucose ($K_i$=1.7 mM) and glucono-${\delta}$-lactone ($K_i$=0.1 mM) when pNPG was used as the substrate. Its activity was inhibited by 41% by 10 mM $Cu^{2+}$ and stimulated by 20% by 10 mM $Mg^{2+}$.

ISOLATION AND IDENTIFICATION OF ANAEROBIC RUMEN BACTERIUM, ACTINOMYCES SP. 40 AND ENZYMATIC PROPERTIES OF β-1, 4-ENDOGLUCANASE

  • Min, H.K.;Choi, Y.J.;Ha, J.K.;Cho, K.K.;Kwon, Y.M.;Chang, Y.H.;Lee, S.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.3
    • /
    • pp.373-382
    • /
    • 1994
  • A bacterial strain No. 40, which produced extracellular endoglucanase, was isolated from the rumen of Korean native goals and identified to be a genus of Actinomyces sp. The optimum conditions for endoglucanase production in PY-CMC medium were initial pH of 7.0 and 4 days of cultivation at $39^{\circ}C$. When localization of endoglucanase activity of Actinomyces sp. was determined, 68% of the enzyme activity was found in the extracellular fraction, 11% of the activity was detected in the periplasmic space and the remaining activity was in the intracellular and cell-bound fractions. The maximal endoglucanase activity was observed at pH 5.0 and it was most s table at pH 5.0. The optimum temperature of this enzyme activity was $55^{\circ}C$, but enzyme activity was gradually lost at temperature above $60^{\circ}C$. The crude enzyme was activated by addition of 10 mM cysteine and 10 mM DTT. But it was inhibited by addition of 10 mM $Cu^{{+}{+}}$ and $Fe^{{+}{+}}$. This crude enzyme could digest carboxymethylcellulose (CMC), and degrade xylan, avicel, pNPG, and pNPC to a less extent.