• Title/Summary/Keyword: np Control Chart

Search Result 3, Processing Time 0.016 seconds

New Attributes and Variables Control Charts under Repetitive Sampling

  • Aslam, Muhammad;Azam, Muhammad;Jun, Chi-Hyuck
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.1
    • /
    • pp.101-106
    • /
    • 2014
  • New control charts under repetitive sampling are proposed, which can be used for variables and attributes quality characteristics. The proposed control charts have inner and outer control limits so that repetitive sampling may be needed if the plotted statistic falls between the two limits. Particularly, the new np and variable X-bar control charts under repetitive sampling are considered in detail. The in-control and out-of-control average run lengths are analyzed according to various process shifts. The performance of the proposed control charts is compared with the existing np and the X-bar control charts in terms of the average run lengths.

Variable Sampling Interval Control Charts for Number of Defectives

  • Cho, Gyo-Young;Ahn, Young-Seon;Kim, Youn-Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.25 no.3
    • /
    • pp.62-73
    • /
    • 1997
  • Previous VSI control chart works have been done on quality variable whose distribution is normal. But there are many situations in which hte assumption of not a, pp.opriate. Also, in many industrial processes, the interest is to monitor the number of defectives. In this paper, we will take the existing properties of VSI control chart developed for the normal distribution and a, pp.y them to the np-chart based on the discrete binomial distribution. We will consider the CUSUM chart for the number of defectives. Here, the interesting object is to compute the VSI ATS for CUSUM control chart using Markov chain a, pp.oach and to compare FSI ATS and VSI ATS.

  • PDF

Adjustment of Control Limits for Geometric Charts

  • Kim, Byung Jun;Lee, Jaeheon
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.5
    • /
    • pp.519-530
    • /
    • 2015
  • The geometric chart has proven more effective than Shewhart p or np charts to monitor the proportion nonconforming in high-quality processes. Implementing a geometric chart commonly requires the assumption that the in-control proportion nonconforming is known or accurately estimated. However, accurate parameter estimation is very difficult and may require a larger sample size than that available in practice in high-quality process where the proportion of nonconforming items is very small. Thus, the error in the parameter estimation increases and may lead to deterioration in the performance of the control chart if a sample size is inadequate. We suggest adjusting the control limits in order to improve the performance when a sample size is insufficient to estimate the parameter. We propose a linear function for the adjustment constant, which is a function of the sample size, the number of nonconforming items in a sample, and the false alarm rate. We also compare the performance of the geometric charts without and with adjustment using the expected value of the average run length (ARL) and the standard deviation of the ARL (SDARL).