• Title/Summary/Keyword: nozzle pressure ratio

Search Result 394, Processing Time 0.023 seconds

Numerical Study on a Hydrogen Recirculation Ejector for Fuel Cell Vehicle (연료전지 수소재순환 이젝터 시스템에 관한 수치해석적 연구)

  • NamKoung, Hyuck-Joon;Moon, Jong-Hoon;Jang, Seock-Young;Hong, Chang-Oug;Lee, Kyoung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.156-160
    • /
    • 2007
  • Ejector system is a device to transport a low-pressure secondary flow by using a high-pressure primary flow. Ejector system is, in general, composed of a primary nozzle, a mixing section, a casing part for suction of secondary flow and a diffuser. It can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejector system is simple in construction and has no moving parts, so it can not only compress and transport a massive capacity of fluid without trouble, but also has little need for maintenance. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an applicable model and operating conditions for an ejector in the condition of sonic and subsonic, which can be extended to the hydrogen fuel cell vehicle. Experimental and theoretical investigation on the sonic and subsonic ejectors with a converging-diverging diffuser was carried out. Optimization technique and numerical simulation was adopted for an optimal geometry design and satisfying the required performance at design point of ejector for hydrogen recirculation. Also, some sonic and subsonic ejectors with the function of changing nozzle position were manufactured precisely and tested for the comparison with the calculation results.

  • PDF

Performance Analysis on a Hydrogen Recirculation Ejector for Fuel Cell Vehicle (연료전지 수소재순환 이젝터 성능 해석)

  • NamKoung, Hyuck-Joon;Moon, Jong-Hoon;Jang, Seock-Young;Hong, Chang-Oug;Lee, Kyoung-Hoon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.256-259
    • /
    • 2008
  • Ejector system is a device to transport a low-pressure secondary flow by using a high-pressure primary flow. Ejector system is, in general, composed of a primary nozzle, a mixing section, a casing part for suction of secondary flow and a diffuser. It can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejector system is simple in construction and has no moving parts, so it can not only compress and transport a massive capacity of fluid without trouble, but also has little need for maintenance. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an applicable model and operating conditions for an ejector in the condition of sonic and subsonic, which can be extended to the hydrogen fuel cell vehicle. Experimental and theoretical investigation on the sonic and subsonic ejectors with a converging-diverging diffuser was carried out. Optimization technique and numerical simulation was adopted for an optimal geometry design and satisfying the required performance at design point of ejector for hydrogen recirculation. Also, some ejectors with a various of nozzle throat and mixing chamber diameter were manufactured precisely and tested for the comparison with the calculation results.

  • PDF

An Experimental Study on the Performance of a Liquid-Vapor Ejector with Water (액체-증기 이젝터의 성능에 관한 실험적 연구)

  • 박대웅;정시영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.4
    • /
    • pp.345-353
    • /
    • 2000
  • In this study, the performance of five ejectors has been investigated with working fluids of water and water vapor. The diameters of nozzle and mixing tube of five ejectors were 1 and 1.5(ejector A), 1 and 2(ejector B), 1 and 2.5(ejector C), 1 and 3(ejector D), 2 and 4(ejector E) in millimeters. The length of the mixing tube was 8-10 times of its diameter. For each ejector, the ratio of mass flow rate of ejected water to that of entrained water vapor, $\mu$, was evaluated in terms of evaporator pressure, mass flow rate of ejected water, and water temperature. It was found that the performance of an ejector was not stable when the ratio of diameters was too small or too large(ejector A and D) and $\mu$ was almost the same for two ejectors with the same diameter ratio(ejector B and E). It was also found that $\mu$ increased almost linearly with an increase of evaporator pressure and the ratio $\mu$ increased as water temperature decreased. As expected, $\mu$ converged to zero as the water temperature approached the evaporator temperature. Finally, a non-dimensional correlation has been developed to predict$\mu$ terms of evaporator pressure and saturation pressure of ejected water.

  • PDF

NUMERICAL STUDY ON THE OPTIMAL DESIGN OF SPRAY SYSTEM IN PACKED BED SCRUBBER (충진층식 스크러버의 스프레이 시스템 최적 설계에 대한 수치해석적 연구)

  • Ko, S.W.;Ro, K.C.;Ryou, H.S.
    • Journal of computational fluids engineering
    • /
    • v.12 no.1
    • /
    • pp.28-34
    • /
    • 2007
  • This study evaluates the performance of the packed bed scrubber and proposes the optimization of spray system for improvements of collection efficiency. The packed bed scrubber is used primarily in the semiconductor manufacturing process. The mean diameter of entering solid particles in scrubber is the submicron. The impaction between water droplets and solid particles is an important factor in removing the solid particles. Thus, the coverage area of spray system influences on the collection efficiency. The collection efficiency of a single droplet is calculated through the mathematical model and numerical calculations are performed for coverage area for each nozzle type (Droplet diameters: 500, 319.5, $289.5{\mu}m$) and injected directions (0, 15, $30^{\circ}$). In case of nozzle type 3, the collection efficiency of a single droplet is highest but the collection efficiency of spray system has lowest value because the ratio of flow rate between the gas and water is below 0.1. The results show the coverage area ratio is about 85% in the case of nozzle type 3 and downward sirection $15^{\circ}$. It was shown that a coverage area increase by two times than an existing spray system. In simulation of demister, collection efficiency by demister is predicted about 80% and the pressure drop in demister is below 3.5 Pa.

Performance Analysis of SITVC System with Various Secondary Injection Conditions (이차분사노즐 작동 조건 변화에 따른 SITVC 성능해석)

  • Bae, Ji-Yeul;Song, Ji-Woon;Kim, Tae-Hwan;Cho, Hyung-Hee;Bae, Ju-Chan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.116-121
    • /
    • 2011
  • Performance of Secondary Injection Thrust Vector Control system is investigated under various secondary injection operating conditions. 3-dimensional converging-diverging nozzle having 8 secondary injection nozzles is used in this numerical study. Total pressure of flow inside the nozzle is about 70bars, and total temperature set to 300K for cold flow simulation. Effect of secondary injection flow rate and injection nozzle configuration is considered in this research. Simulation is conducted with commercial CFD code Ansys Fluent v13. Spalart-Allmaras(1-equation)model is used for turbulence modeling with AUSM+ scheme. Various performance factors as Axial thrust, side force, system specific impulse ratio are considered and explained for system performance evaluation.

  • PDF

An Experimental Study on the Atomization Characteristics of Coal-Water-Mxture (CWM의 미립화특성에 대한 실험적 연구)

  • 김윤태;전영남;채재우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1330-1336
    • /
    • 1990
  • The factors to act on atomization of liquid fuel are viscosity, geometric shape of nozzle, atomizing pressure, etc. Most of high viscous liquid fuels show decrease in viscosity by raising the preheat temperature, but the viscosity of liquid fuel like CWM does not readily change with fuel temperature. As an experimental study to investigate the atomizing characteristics of CWM, CWM fuel is atomizing with a twin-fluid atomizer, and the effects of the geometric shape of spray nozzle on atomization are investigated by measuring the Sauter`s Mean Diameter (SMD) of CWM. The summarized results obtained in this study are as follows ; (1) As the ratio of the mass flows of atomizing air to that of fuel (W$_{a}$ /W$_{1}$) increases, 능 decreases when fuel temperature is constant. (2) At the ratio (t/d) 4 of thickness (t) of spray nozzle hole to the diameter (d) of the hole, there is the best atomization. And SMD decreases when t/d is between 1 to 4 and increases when t/d > 4.

The influence of co-axial air flow on the breakup length of a smooth liquid jet (平滑流의 分裂길이에 미치는 同軸氣流의 영향)

  • 김덕줄;이충원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1390-1398
    • /
    • 1988
  • The purpose of this study was experimentally to investigate the disintegration process and disintegration mechanism when co-axial air flows vertically for the longest smooth liquid jet. These were affected by liquid velocity, air velocity, air-to-liquid diameter ratio, nozzle shape, and air-liquid contacting position. That is, this process of disintegration of the liquid jet was similar to that occurred when liquid pressure was increased. At Reynolds number of 10, 000 and below, the changes in the breakup length represent different tendency according to liquid flow rate. The influence of air flow on the disintegration of liquid jet was different according to air-to-liquid diameter ratio, air orifice diameter, nozzle shape and contacting position of liquid and air. In particular, when the tip of liquid nozzle was inside the air orifice, the effect of air flow was the larger than outside the air orifice. The effect of liquid mass flow rate on the change rate of the breakup length was also different.

Design and Application of Thermal Vapor Compressor for Multi-Effect Desalination Plant (열증기압축기 설계와 MED 담수설비에의 적용)

  • Park, Il-Seok;Park, Sang-Min;Ha, Ji-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1670-1675
    • /
    • 2004
  • A thermal vapor compressor in which the subsonic/supersonic flow appears simultaneously, has been accurately designed through the CFD analysis for the various shape parameters such as the primary nozzle shape, converging duct shape. mixing tube diameter, and so on. The performance of the developed thermal vapor compressor has been experimentally verified to be installed in a Multi Effect Desalination(MED) plant as an important element, In this paper, the experimental results for Various boundary conditions(motive pressure, suction pressure, and discharge pressure) are presented in comparing with CFD results. The two results show a good agreement with each other within 3.5 % accuracy with regard to the entrainment ratio.

  • PDF

Investigation on the Performance Characteristics of the 75ton Class Turbopump Turbine (75톤급 액체로켓 엔진 터보펌프 터빈의 성능특성연구)

  • Jeong, Eun-Hwan;Lee, Hang-Gee;Park, Pyun-Goo;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.38-44
    • /
    • 2010
  • Performance test of the 75ton class turbopump turbine was performed. Through the turbine power measurement in the wide-range operational conditions, velocity ratio, total pressure loss, and relative flow angle characteristics was quantified. Efficiency and nozzle exit pressure behavior was also investigated and compared with 30ton turbopump turbine data. A rotor blade was redesigned based on the test results and CFD analysis.

  • PDF

A Study on Propulsion Performance of Underwater Ram-Jet with Optimized Nozzle Configuration (최적 노즐형상을 갖는 수중램제트의 추진성능에 관한 연구)

  • Kang, H.K.;Kim, Y.T.;Lee, Y.H.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.4
    • /
    • pp.42-52
    • /
    • 1997
  • The basic principle of underwater ram-jet as a unique marine propulsion concept showing vary high cruise speed range(e. g. 80-100 knots) is the thrust production by the transfer of the potential energy of compressed gas to the operating liquid through kinetic mixing process. This paper is aimed to investigate the propulsive efficiency of the nozzle flow in underwater ram-jet at the speed of 80 knots for the buried type vessel. The basic assumption of the theoretical analysis is that mixture of water and air can be treated as incompressible gas. For an optimized nozzle configuration obtained from the performance analysis, preliminary data for performance evaluation are obtained and effects of nozzle inner wall friction, ambient temperature, ambient pressure, water density, gas velocity, bubble radius, flow velocity, diffuser area ratio, mass flow ratio and water velocity gradient are investigated.

  • PDF