• Title/Summary/Keyword: nozzle path

Search Result 51, Processing Time 0.014 seconds

A Study on Risk Assessment of extreme Cold Waves in Energy Storage Facilities According to Climate Change (기후변화에 따른 에너지 저장시설 극한 한파 위험성 평가에 관한 연구)

  • Han-Duk Kim;Eun-Gu Ham;Se-Young Ko
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.3
    • /
    • pp.584-592
    • /
    • 2024
  • Purpose: The biggest concern in cold wave situations is that the fire extinguishing water initially supplied through dry pipes with empty pipes consumes enthalpy and freezes as it rapidly approaches the surface temperature of steel pipes that have been exposed to sub-zero outdoor air for a long time. It has no choice but to be. Method: Therefore, the study found that ice crystals were generated during transport, making it difficult to transport fire extinguishing water, and as a result of the review, when the heat load passed through the piping material, the heat loss per unit length from the piping to the surroundings was 0.946. Results: When calculating the volume of the main pipe, it was calculated that the fire extinguishing water supplied at a temperature of 15 degrees from the underground pipe would have a volume of 3.33m3 to reach the first branch point. If we calculate the heat required until this volume reaches below zero, we get 316.350 kcal. When the results were reviewed using the related formula, the time required for the fire extinguishing water to completely freeze up to the first branch of the steel pipe was found to be 3,412 seconds. Conclusion: Fire-fighting water, which must reach from the main pipe to the branch pipe and nozzle in good condition, must minimize heat loss through the pipe surface along the transfer path. To achieve this, it is necessary to supplement insulation of the main pipe and branch pipes. In this study, the use of inorganic perlite material or flame-retardant rubber foam insulation was proposed through analysis of insulation properties.