• 제목/요약/키워드: nozzle location

검색결과 130건 처리시간 0.026초

직경이 작은 원자력배관의 파단전누설 해석에 미치는 노즐의 영향 (Effect of Nozzle on LBB Evaluation for Small Diameter Nuclear Piping)

  • 유영준;김영진
    • 대한기계학회논문집A
    • /
    • 제20권6호
    • /
    • pp.1872-1881
    • /
    • 1996
  • LBB(Leak-Before-Break) analysis is performed for the highest stress location of each different type of mateerials in the nuclear piping line. In most cases, the highest stress occurs in the pipe and nozzle interface location. i.e. terminal end. The current finite element analysis approach utilizes the symmetry condition both for locations near the nozzle and for locationa away from the nozzle to minimize the size of the finite element model and to make analysis simple when calculating the J-integral values at the crack tip. In other words, the nozzle is not included in the finite element model. However, in reality, the symmetric condition is not applicable for the pipe-nozzle interface location. Because the pipe-nozzle interface location is asymmetric due to different stiffenss of the pipe and nozzle(both material and dimensions). The simplified analysis approach for pipe-nozzle interface locaiton is too conservative for a smaller diameter piping. In tlhis paper, various analyses are performed for the range of materials and crack sizes to evaluate the nozzle effect for a LBB anlaysis. This paper presents methodology for developing the piping evaluaiton diagram at the pipe-nozzle interface location.

노즐 형상과 기판의 위치 변화가 초음속 유동에 미치는 영향에 관한 수치해석 연구 (Numerical study on the effects of nozzle geometry and substrate location in the supersonic flow)

  • 박정재;윤석구;김호영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.58.2-58.2
    • /
    • 2010
  • This paper deals with the simulation of solid particle coating technology via supersonic nozzle in vacuum environment to devote as an aerosol-deposition device. In order to improve efficiencies of nozzle and coating process, effects of shockwave, nozzle geometry, and substrate location were studied computationally under a fixed chamber pressure of 0.01316 bar which is nearly vacuous. Shockwave is the important factor affect to entire flow because shockwave in the jet flow dissipates the kinetic energy of the flow in the supersonic condition. Results show that various nozzle geometries have significant effect on the supersonic flow and we know that the supersonic nozzle should be optimized to minimize the loss of the flow. Another parameter, the distance between substrate and nozzle tip, shows little effect in this study.

  • PDF

워터 제트내 유동장에 관한 수치해석 연구 (A Numerical Study on Flow in a Water Jet)

  • 김일수;박창언;김대호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.27-32
    • /
    • 1998
  • This paper presents the development of a two-dimensional model for investigating the fluid flow in water jet and calculating the velocity and pressure distributions. The mathematical formulation as a standard k-$\epsilon$ model was solved employing a general thermofluid-mechanics computer program, PHOENICS code, which is based on the Semi-Implicit Method Pressure Linked Equations(SIMPLE) algorithm. The developed code was applied to water jet design to determine the nozzle size, and investigated the effect of the change of nozzle location. Calculated results showed that the flow pattern is not changed as the change of nozzle location.

  • PDF

마이크로 가스터빈을 위한 하이브리드/이중 선회제트 연소기의 개발 (Part I: 형상 최적화를 위한 실험적 연구) (Development of a Hybrid/Dual Swirl Jet Combustor for a Micro-Gas Turbine (Part I: Experimental Study on Geometric Optimization))

  • 박태준;황철홍;이기만
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.199-200
    • /
    • 2012
  • An experimental study on geometric optimization was conducted to develop a hybrid/dual swirl jet combustor for a micro-gas turbine. A hybrid concept indicating a combination of swirling jet partially premixed and premixed flames were adopted to achieve high flame stability as well as clean combustion. Location of pilot nozzle, angle and direction of swirl vane were varied as main parameters with a constant fuel flow rate for each nozzle. The results showed that the variation in location of pilot nozzle resulted in significant change in swirl intensity due to the change in flow area near burner exit, and thus, optimized nozzle location was determined on the basis of CO and NOx emissions under conditions of co-swirl flow and swirl $angle=30^{\circ}$. The increase in swirl angle (from $30^{\circ}$ to $45^{\circ}$) enhanced the emission performances, in particular, with a significant reduction of CO emission near lean-flammability limit. It was observed that the CO emission near lean-flammability limit was further reduced through the counter-swirl flow. However, there was not significant change in the NOx emission in the operating conditions (i.e. equivalence ratio of 0.6~0.7) between the co- and the counter-swirl flow.

  • PDF

Development of gamma ray scanning coupled with computed tomographic technique to inspect a broken pipe structure inside laboratory scale vessel

  • Saengchantr, Dhanaj;Srisatit, Somyot;Chankow, Nares
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.800-806
    • /
    • 2019
  • This paper presents a laboratory experiment on data acquisition technique that applied to the gamma radiation scanning coupled with computed tomography (CT) technique for inspection of broken nozzle inside the vertical vessel. The acquisition technique was developed to inspect a large diameter vessel when suspicious problem location is not easily accessed. This technique allows the installation of gamma radiation source (Cesium 137, Cs-137), and detectors (Sodium Iodine. NaI(Tl)) from the accessible location to the required location and performs the scanning by designed pattern. To demonstrate the designed technique, top opened tank which installed with six cut steel pipes diameter of 76.2 mm (3") at a certain position was selected. They were assumed to be a gas riser pipes inside the vessel. Three studied cases were performed, (a) projection of well installed six pipes, (b) projection of one out of six broken pipe and (c) one of nozzle was assumed to be failure and fell down until one out of six pipes was broken and obstructed by nozzle. Results clearly indicated the capability of developed technique to distinguish between normal situation case and abnormal situation cases.

액체용 중량식 유량계 교정장치의 일방향 Diverter 특성연구 (Characteristics of Uni-directional Diverter for Gravimetric Calibration Facility)

  • 남기한;박종호;김홍집
    • 한국유체기계학회 논문집
    • /
    • 제20권1호
    • /
    • pp.59-64
    • /
    • 2017
  • Diverter is an essential element in gravimetric calibration method of flowmeter. Error of diverter are influenced by flow velocity profile of nozzle outlet, motion velocity of diverter and detecting location. That's why, time detection position of diverter is tuned through repetitive test for minimizing error of diverter. Further the diverter must be compared with the other institutions test since the influence on the accuracy of the flow meter used in the test. In this paper, errors (flow velocity profile of nozzle outlet, motion velocity of diverter and detecting location) of diverter are decreased by produced uni-direction diverter and error of gravimetric calibration system is decreased. Uni-direction diverter is calibrated by gravimetric calibration system with precision flowmeter, the flowmeter is calibrated by pipe prover and other institutions and uni-direction diverter is evaluated. Uni-direction diverter is not influenced by flow velocity profile of nozzle outlet, motion velocity of diverter and detecting location. As a result, Uni-direction diverter can calibrate in wider scope since increasing ratio of maximum and minimum flow rate of uni-direction diverter.

플라즈마 식각장치내 노즐의 위치에 따른 희박기체유동 및 알루미늄 식각률의 변화에 관한 연구 (Effects of Nozzle Locations on the Rarefied Gas Flows and Al Etch Rate in a Plasma Etcher)

  • 황영규;허중식
    • 대한기계학회논문집B
    • /
    • 제26권10호
    • /
    • pp.1406-1418
    • /
    • 2002
  • The direct simulation Monte Carlo(DSMC) method is employed to calculate the etch rate on Al wafer. The etchant is assumed to be Cl$_2$. The etching process of an Al wafer in a helicon plasma etcher is examined by simulating molecular collisions of reactant and product. The flow field inside a plasma etch reactor is also simulated by the DSMC method fur a chlorine feed gas flow. The surface reaction on the Al wafer is simply modelled by one-step reaction: 3C1$_2$+2Allongrightarrow1 2AIC1$_3$. The gas flow inside the reactor is compared for six different nozzle locations. It is found that the flow field inside the reactor is affected by the nozzle locations. The Cl$_2$ number density on the wafer decreases as the nozzle location moves toward the side of the reactor. Also, the present numerical results show that the nozzle location 1, which is at the top of the reactor chamber, produces a higher etch rate.

기계적 편향판 설치위치의 변화에 따른 유동특성에 대한 연구 (A Study on Flow Characteristics with the Installed Location Change of Mechanical Deflector)

  • 김경련;박종호
    • 한국유체기계학회 논문집
    • /
    • 제18권5호
    • /
    • pp.49-53
    • /
    • 2015
  • Thrust vector control is the method which generates the side force and roll moment by controlling exhausted gas directly in a rocket nozzle. TVC is classified by mechanical and fluid dynamic methods. Mechanical methods can change the flow direction by several objects installed in a rocket nozzle exhaust such as tapered ramp tabs and jet vane. Fluid dynamic methods control the flight direction with the injection of secondary gaseous flows into the rocket nozzle. The tapered ramp tabs of mechanical methods are used in this paper. They installed at the rear in the rocket nozzle could be freely moved along axial and radial direction on the mounting ring to provide the mass flow rate which is injected from the rocket nozzle. TVC of the tapered ramp tabs has the potential to produce both large axial thrust and high lateral force. We have conducted the experimental research and flow analysis of ramp tabs to show the performance and the structural integrity of the TVC. The experiments are carried out with the supersonic cold flow system and the schlieren graph. This paper provides to analyze the location of normal shock wave and distribution of surface pressure on the region enclosed by the tapered ramp tabs.

전자동 자반건조기 제작에 이용할 Water Jet의 유동해석 모델 (Development of a Model for Fluid Analysis of Water Jet Using Automatic Javan(Salted-dry Seaweeds) Dryer Machine)

  • 김일수;박창언;정영재;손준식;남기우
    • 한국생산제조학회지
    • /
    • 제7권5호
    • /
    • pp.53-58
    • /
    • 1998
  • This paper concentrates on the development of a computational design program to determine nozzle size in water jet, combing the numerical optimization technique with the flow analysis code. To achieve the above objective, a two-dimensional model was developed for investigating the fluid flow in water jet and calculating the velocity and pressure distributions. The mathematical formulation as a standard ${k}-\varepsilon$ model was solved employing a general thermo fluid-mechanics computer program, PHOENICS code, which is based on the Semi-Implicit Method Pressure Linked Equations(SIMPLE) algorithm. The developed code was applied to water jet design to determine the nozzle size, and investigated the effect of the change of nozzle location. Calculated results showed that the flow pattern is not changed as the change of nozzle location.

  • PDF

2차 분사의 위치 변화에 따른 로켓노즐 출구에서의 추력 분포 변화 (The Variation of Thrust Distribution of the Rocket Nozzle Exit Plane with the Various Position of Secondary Injection)

  • 김성준;이진영;박명호
    • 산업기술연구
    • /
    • 제20권B호
    • /
    • pp.45-53
    • /
    • 2000
  • A numerical study is done on the thrust vector control using gaseous secondary injection in the rocket nozzle. A commercial code, PHOENICS, is used to simulate the rocket nozzle flow. A $45^{\circ}-15^{\circ}$ conical nozzle is adopted to do numerical experiments. The flow in a rocket nozzle is assumed a steady, compressible, viscous flow. The exhaust gas of the rocket motor is used as an injectant to control the thrust vector of rocket at the constant rate of secondary injection flow. The injection location which is on the wall of rocket is chosen as a primary numerical variable. Computational results say that if the injection position is too close to nozzle throat, the reflected shock occurs. On the other hand, the more mass flow rate of injection is needed to get enough side thrust when the injection position is moved too far from the throat.

  • PDF