• Title/Summary/Keyword: noxious gas emission

Search Result 51, Processing Time 0.024 seconds

Effect of probiotics and xylo-oligosaccharide supplementation on nutrient digestibility, intestinal health and noxious gas emission in weanling pigs

  • Liu, JB;Cao, SC;Liu, J;Xie, YN;Zhang, HF
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.10
    • /
    • pp.1660-1669
    • /
    • 2018
  • Objective: This study was conducted to evaluate the effect of probiotics (Bacillus subtilis and Enterococcus faecium) and xylo-oligosaccharide (XOS) supplementation on growth performance, nutrient digestibility, serum profiles, intestinal health, fecal microbiota and noxious gas emission in weanling pigs. Methods: A total of 240 weanling pigs ([Yorkshire${\times}$Landrace]${\times}$Duroc) with an average body weight (BW) of $6.3{\pm}0.15kg$ were used in this 28-day trial. Pigs were randomly allocated in 1 of the following 4 dietary treatments in a $2{\times}2$ factorial arrangement with 2 levels of probiotics (0 and 500 mg/kg probiotics) and XOS (0 and 200 mg/kg XOS) based on the BW and sex. Results: Administration of probiotics or XOS improved average daily gain (p<0.05) during 0 to 14 d and the overall period, while pigs that were treated with XOS had a greater average daily gain and feed efficiency (p<0.05) compared with unsupplemented treatments throughout 15 to 28 d and the whole experiment. Either probiotics or XOS treatments increased the apparent total tract digestibility of nutrients (p<0.05) during 0 to 14 d. No effects on serum profiles were observed among treatments. The XOS increased villus height: crypt depth ratio in jejunum (p<0.05). The supplementation of probiotics (500 mg/kg) or XOS (200 mg/kg) alone improved the apparent total tract digestibility of dry matter, nitrogen and gross energy on d 14, the activity of trypsin and decreased fecal NH3 concentration (p<0.05). Administration of XOS decreased fecal Escherichia coli counts (p<0.05), while increased lactobacilli (p<0.05) on d 14. There was no interaction between dietary supplementation of probiotics and XOS. Conclusion: Inclusion of XOS at 200 mg/kg or probiotics (Bacillus subtilis and Enterococcus faecium) at 500 mg/kg in diets containing no antibiotics significantly improved the growth performance of weanling pigs. Once XOS is supplemented, further providing of probiotics is not needed since it exerts little additional effects.

Effects of dietary energy and lipase levels on nutrient digestibility, digestive physiology and noxious gas emission in weaning pigs

  • Liu, J.B.;Cao, S.C.;Liu, J.;Pu, J.;Chen, L.;Zhang, H.F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.12
    • /
    • pp.1963-1973
    • /
    • 2018
  • Objective: This study was conducted to evaluate the effect of dietary energy and lipase supplementation on growth performance, nutrient digestibility, serum profiles, intestinal morphology, small intestinal digestive enzyme activities, biochemical index of intestinal development and noxious gas emission in weaning pigs. Methods: A total of 240 weaning pigs ([Yorkshire${\times}$Landrace]${\times}$Duroc) with an average body weight (BW) of $7.3{\pm}0.12kg$ were used in this 28-d experiment. Weaning pigs were randomly allocated to 4 dietary treatments in a $2{\times}2$ factorial arrangement with 2 levels of energy (net energy = 2,470 kcal/kg for low energy diet and 2,545 kcal/kg for basal diet) and 2 levels of lipase (0 and 1.5 U/g of lipase) according to BW and sex. There were 6 replications (pens) per treatment and 10 pigs per pen (5 barrows and 5 gilts). Results: Weaning pigs fed the low energy diet had lower (p<0.05) gain-to-feed ratio (G:F) throughout the experiment, apparent digestibility of dry matter, nitrogen, ether extract, and gross energy during d 0 to 14, average daily gain during d 15 to 28, lipase activity in duodenum and ileum and protein/DNA in jejunum (p<0.05), respectively. Lipase supplementation had no effect on growth performance but affected apparent nutrient digestibility (p<0.05) on d 14 and enhanced lipase activity in the duodenum and ileum and protease activity in duodenum and jejunum of pigs (p<0.05) fed the low energy diet. Lipase reduced serum low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG), $NH_3$ production (p<0.05) from the feces. Conclusion: The low energy diet decreased G:F throughout the experiment and nutrient digestibility during d 0 to 14 as well as lipase activity in duodenum and ileum. Lipase supplementation increased nutrient digestibility during d 0 to 14 and exerted beneficial effects on lipase activity in duodenum and ileum as well as protease activity in duodenum and jejunum, while reduced serum LDL-C, TG and fecal $NH_3$.

Influence of yeast hydrolysate supplement on growth performance, nutrient digestibility, microflora, gas emission, blood profile, and meat quality in broilers

  • Sampath, Vetriselvi;Han, Kyudong;Kim, In Ho
    • Journal of Animal Science and Technology
    • /
    • v.63 no.3
    • /
    • pp.563-574
    • /
    • 2021
  • A total of 1512 Ross 308 broilers (one - day - old) were assigned (random blocks) to 1of 3 dietary treatments with 28 replicates of 18 chicks/cage. The dietary treatments were Cornsoybean-meal based basal diet supplemented with 0%, 0.1%, and 0.2% of commercial yeast hydrolysate (YH [Saccharomyces cerevisiae]). The graded level of YH supplementation has linearly increased broilers body weight gain on d 21, 35, and overall (p = 0.044, 0.029, and 0.036, respectively) experimental period. In addition, the increased level of YH supplementation has linearly reduced feed conversation ratio of broilers on d 21, 35, and overall trial period (p = 0.041, 0.052, and 0.032, respectively). However, the feed intake and mortality of broilers were not affected by the graded level of YH supplementation. Though nutrient digestibility of dry matter (p = 0.012) and nitrogen (p = 0.021) was linearly increased in broilers fed YH supplementation, at the end of the trial it fails to affect the total track digestible energy. Dietary inclusion of YH supplementation showed a beneficial effect on the microbial population as linearly improved lactobacillus (p = 0.011) and reduced Escherichia coli counts (p = 0.042). An increasing level of YH supplementation has tended to decrease NH3 (p = 0.069) and linearly decrease H2S (p = 0.027) of noxious gas emission in broilers. Moreover, dietary YH supplements trend to increase the glucose (p = 0.066) and reduced cholesterol (p = 0.069) level. At the end of the test, YH supplementation elicited a linear reduction in drip loss on days 5 and 7, respectively (p = 0.045, and 0.021). Furthermore, dietary inclusion of YH supplementation had linearly increased villus height (p = 0.051) but fails to affect crypt depth. Therefore, in terms of positive effects on the broiler's overall performance, we suggest that dietary supplements containing graded YH levels in the broilers diet could serve as a potential alternative for growth promoters.

Effects of Dietary Wormwood (Artemisia montana Pampan) Powder Supplementation on Growing Performance and Fecal Noxious Gas Emission in Weanling Pig (쑥분말 급여가 이유자돈의 생산성과 분의 유해가스 발생량에 미치는 영향)

  • Kim, Y M.;Kim, J.H.;Kim, S.C.;Lee, M.D.;Sin, J.H.;Ko, Y.D.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.551-558
    • /
    • 2003
  • This study was conducted to investigate the effect of dietary wormwood powder (Artemisia montana Pampan; WP) supplementation on growing performance and fecal noxious gas emission in weanling pigs. One hundred and twelve pigs were alloted into four treatments and offered for 4 weeks one of the diets supplemented with 0% (control), 0.5% (0.5), 1.0% (1.0) and 2.0% (2.0) WP. Each treatments has four replicate with 7 pigs per replicate. ADG, ADFI and F/G were improved by 1.0 and 2.0 WP supplementation during 0d${\sim}$14d feeding. Feed intake of 1.0 WP diet was higher (P<0.05) than any other diet during 15d${\sim}$28d feeding. But there were no differences among the other treatments in the weight gain and feed conversion. During the whole feeding period, daily weight gain and feed intake of pigs fed 1.0 and 2.0 treatments were higher than those of pigs fed control and 0.5 diet. DM digestibility was significantly (P<0.05) higher in weanling pigs fed 0.5, 1.0 and 2.0 WP than that of the control. The protein digestibility was significantly improved in 1.0 WP treatment and the phosphorus digestibility was improved in 2.0 WP treatment. Excretion of nitrogen and phosphorus was significantly (P<0.05) decreased by 2.0 treatment than control. Emission of fecal ammonia after 48 hours storage in vinyl bag dramatically decreased by all the treatments except control. However, there was no statistical difference in fecal hydrogen sulfide emission among treatments. In conclusion, this study suggested that the dietary 1.0${\sim}$2.0 supplementation of WP can improve productivity of pigs decrease fecal $NH_3$ and $H_2S$ gas emission.

Effect of Probiotics in Diet on Growth Performance, Nutrient Digestibility, Fecal Microbial Count, Noxious Gases Emission from the Feces, and Blood Profile in Early-Finishing Pigs (초기 비육돈에서 생균제 첨가 급여가 생산성, 영양소 소화율, 분내 Lactobacillus와 Escherichia coli 농도, 분으로부터의 유해가스 발생량 및 혈중 혈액세포 농도에 미치는 영향)

  • Jung, Ji-Hong;Hong, Seong-Min;Kim, Hyo-Jin;Meng, Qing Wei;Kim, In-Ho
    • Journal of Animal Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.23-28
    • /
    • 2010
  • This study was conducted to evaluate the effects of probiotics supplementation on growth performance, nutrient digestibility, fecal concentrations of Lactobacillus and Escherichia coli, emission of noxious gases from the feces, and circulating concentrations of the blood cells in early-finishing pigs. A total of sixty pigs [(Landrace ${\times}$ Yorkshire) ${\times}$ Duroc] (initial body weight 56.48 ${\pm}$ 1.66 kg) were used for the 28 days feeding trial. Dietary treatments included 1) CON (basal diet), 2) P1 (CON + 0.1% Agariemycetes) and 3) P2 (CON + 0.2% Agariemycetes). There were three dietary treatments with five replicate pens per treatment and four pigs per pen. There was no significant difference in ADG (average dairy gain) among the treatments (P>0.05). The gain/feed ratio was higher in P2 than CON (P<0.05). The P2 showed the highest digestibility of dry matter and energy (P<0.05). No significant difference was observed in the fecal Lactobacillus counts but fecal Escherichia coli population of P2 was lower than that of CON (P<0.05). The ammonia, $H_2S$ and total mercaptan was higher in P1 and P2 than CON (P<0.05). Blood characteristics were not affected by probiotics (P>0.05) supplementation. In conclusion, the results showed that dietary supplementation of probiotics at 0.2% level affected gain/feed ratio, dry matter and energy digestibility; reduced fecal Escherichia coli and emission of fecal noxious gases in finishing pigs.

Effects of Using Far Infrared Ray (FIR) on Growth Performance, Noxious Gas Emission and Blood Biochemical Profiles in Broiler (원적외선 조사가 육계의 생산성, 유해가스 발생량 및 혈액의 생화학적 조성에 미치는 영향)

  • Son, Jang Ho
    • Korean Journal of Poultry Science
    • /
    • v.42 no.2
    • /
    • pp.125-132
    • /
    • 2015
  • The Far Infrared Ray (FIR) is part of the natural energy as light spectrum of sunlight. Human can disentangle the colors within visible ray, but FIR is invisible to human sight because it has longer wavelength than visible ray. The effect of using FIR on broiler performance, blood biochemical profiles and fecal gas emission from litter. Day-old semi-broiler chicks (Ross ♂ ${\times}$ Hyline ♀) were obtained and assigned to eight pens, 2 replicates of white and green color LED light, and with FIR on each color light, in a 20L:4D of lighting program. The body weight gain and feed efficiency were tend to improve under the green color than white color, which were increased by exposing to FIR on both color light. Emission of ammonia and lower hydrocarbons from litter were not different from each color but there was a decrease by exposing to FIR regardless of light color. The level of blood aspartate aminotransferase (AST) tends to be decreased under green color than white color, and this tendency becomes more pronounced as exposing to FIR. Therefore significantly increased under white color without FIR than green color with FIR (P<0.05). The levels of albumin and immunoglobulin were not different from each color but there was an increase by exposing to FIR regardless of light color. In conclusion, exposing to Far Infrared Ray (FIR) when broiler raising, there is potential to increase broiler performance because of improvement of bioactivity and raising environment.

A Study on Field Application and Laboratory Performance Evaluation of Warm Mix Asphalt (중온아스팔트 혼합물의 현장 적용성 및 실내 공용성 평가)

  • Yang, Sung-Lin;Baek, Cheol-Min;Jeong, Kyu-Dong;Kim, Yeong-Min;Kim, Yong-Joo;Hwang, Sung-Do
    • International Journal of Highway Engineering
    • /
    • v.14 no.4
    • /
    • pp.9-18
    • /
    • 2012
  • PURPOSES : This study evaluated the field applicability and laboratory performance of warm-mix asphalt (WMA) as an alternative technology in asphalt pavement. METHODS : The pilot road using two different types of WMA mixture and one HMA mixture was constructed in Waegwan-Seokjeok road construction site and the mixtures were sampled at the asphalt plant for laboratory testings. The field applicability was assessed in environmental aspects, such as $CO_2$ emission, and in aspects of constructibility using the existing equipment and procedure, i.e., thickness and density measurement. The laboratory testings included the moisture susceptibility test by AASHTO T283, dynamic modulus test, triaxial repeated load permanent deformation test, and the fatigue test. RESULTS : The temperatures for production and compaction of WMA were $20{\sim}30^{\circ}C$ lower than those for HMA and therefore, the noxious gas emission were significantly reduced. The field density of WMA pavements was similar or better than that of HMA pavement. From the laboratory testings, it was found that WMA mixtures exhibit comparable performance to HMA mixture in moisture susceptibility, permanent deformation, and fatigue performance. CONCLUSIONS : With these results, it would be concluded that WMA could replace the existing HMA technology without any significant issue. To support this conclusion, it is necessary to track the long-term performance of WMA in pilot road.

Performance Responses, Nutrient Digestibility, Blood Characteristics, and Measures of Gastrointestinal Health in Weanling Pigs Fed Protease Enzyme

  • Tactacan, Glenmer B.;Cho, Seung-Yeol;Cho, Jin H.;Kim, In H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.7
    • /
    • pp.998-1003
    • /
    • 2016
  • Although exogenous protease enzymes have been used in poultry diets quite extensively, this has not been the case for pig diets. In general, due to their better gut fermentative capacity and longer transit time, pigs have greater capacity to digest dietary proteins than poultry. However, in early-weaned piglets, the stress brought about by weaning adversely affects the digestion of dietary proteins. Therefore, a study was conducted to determine the effects of a commercial protease enzyme in weanling pigs. Indices of growth, nutrient digestibility, blood profiles, fecal microflora, fecal gas emission and fecal scores were measured during the study. A total of 50 weanling pigs ($6.42{\pm}0.12kg$) at 28 d of age were randomly assigned to receive 1 of 2 dietary treatments: i) control diet (corn-soy based) with no supplemental protease (CON), and ii) control diet+200 g/ton protease (PROT) for 42 d. A completely randomized design consisting of 2 treatments, 5 replicates, and 5 pigs in each replicate was used. Growth performance in terms of body weight ($27.04{\pm}0.38kg$ vs $25.75{\pm}0.39kg$; p<0.05) and average daily gain ($491{\pm}7.40g$ vs $460{\pm}7.46g$; p<0.05) in PROT fed pigs were increased significantly, but gain per feed ($0.700{\pm}0.01$ vs $0.678{\pm}0.01$; p>0.05) was similar between treatments at d 42. Relative to CON pigs, PROT fed pigs had increased (p<0.05) apparent total tract digestibility ($84.66%{\pm}0.65%$ vs $81.21%{\pm}1.13%$ dry matter and $84.02%{\pm}0.52%$ vs $80.47%{\pm}1.22%$ nitrogen) and decreased (p<0.05) $NH_3$ emission ($2.0{\pm}0.16ppm$ vs $1.2{\pm}0.12ppm$) in the feces at d 42. Except for a decreased (p<0.05) in blood creatinine level, no differences were observed in red blood cell, white blood cell, lymphocyte, urea nitrogen, and IgG concentrations between treatments. Fecal score and fecal microflora (Lactobacillus and E. coli) were also similar between CON and PROT groups. Overall, the supplementation of protease enzyme in weanling pigs resulted in improved growth rate and nutrient digestibility. Exogenous protease enzyme reduced fecal $NH_3$ emission, thus, potentially serving as a tool in lowering noxious gas contribution of livestock production in the environment.

Effects of Probiotic Complex on Performance, Blood Biochemical and Immune Parameters, Digestive Enzyme Activity, Fecal Microbial Population and Noxious Gas Emission in Broiler Chicks (복합생균제가 육계의 생산성, 혈액생화학성분과 면역지표, 소화효소 활성도, 분중 미생물 및 유해가스 발생에 미치는 영향)

  • Kim, Min-Jeong;Jeon, Dong-Gyung;Ahn, Ho-Sung;Yoon, Il-Gyu;Moon, Eun-Seo;Lee, Chai-Hyun;Lim, Yong;Jang, In-Surk
    • Korean Journal of Poultry Science
    • /
    • v.47 no.3
    • /
    • pp.169-180
    • /
    • 2020
  • This study examined the effects of a probiotic complex (PC) containing Lactobacillus plantarum, Bacillus subtilis, and Saccharomyces cerevisiae on growth performance, organ weight, immune parameters, fecal microbial count, and noxious odor in broiler chicks. A total of 216 birds (4-day-old) were fed a basal diet (CON) and a diet supplemented with 0.25% (PC1) and 0.5% (PC2) of PC until 35 days of age. No difference in body weight, feed intake, and FCR was observed among the groups. The intestinal mucosal weight of the PC1 group was greater than that of the CON group without affecting weights of the other organs. Intestinal secretory immunoglobulin A (sIgA) levels in the PC2 group increased significantly (P<0.05) compared with that in the CON group. The PC2 group also had a strong tendency for elevated blood sIgA levels. Dietary PC did not affect the level of interleukin-1β in the blood and mucosal tissues or alter maltase, sucrase, and leucine aminopeptidase activities in the intestinal mucosa. The PC2 group had higher colony-forming units (cfu) for L. plantarum and S. cerevisiae, but lower cfu for E. coli than those in the CON group. Compared to the CON diet, the PC2 diet resulted in a decreased H2S concentration and a tendency toward decreased CH3SH concentration. In conclusion, a 0.5% PC diet showed increased sIgA and desirable microbial population, and decreased noxious odor in the feces, suggesting that PC could be applied as an environmentally friendly feed additive in broiler chicks.

Effect of Feeding Multiple Probiotics on Performance and Fecal Noxious Gas Emission in Broiler Chicks (혼합 생균제의 급여가 육계의 생산성 및 계분의 유해가스 발생에 미치는 영향)

  • Yoon C.;Na C. S.;Park J. H.;Han S. K.;Nam Y. M.;Kwon J. T.
    • Korean Journal of Poultry Science
    • /
    • v.31 no.4
    • /
    • pp.229-235
    • /
    • 2004
  • A study was conducted to examine the effect of dietary supplementation of multiple probiotics (EM) on growth performance, blood cholesterol, intestinal micro flora, and fecal gas emission in broiler chicks. A total of 450 one day old male broiler chicks (Ross $\times$ Ross) were divided into six treatments with five replications in each treatment for five weeks. Treatments were factorially designed with two levels of diet containing probiotics (DW; 0, $0.2\%$) and three levels of drinking water containing probiotics (DW; 0, 0.01, $0.1\%$). Basal diets contained $21.5\%$ CP and 3,100 kcal/kg ME for starting and $19\%$ CP and 3,100 kcal/kg ME for finishing period. Weight gain, feed intake, and feed conversions of birds fed with probiotics were not significantly different between Ds. Total cholesterol and triglyceride levels were significantly lower (P<0.05) in birds fed with DW $0.01\%$ or $0.1\%$ compared with no probiotics group, but there was no significant difference between D treatments. The number of E. coli, Salmonella and Lactobacillus in the ileum and cecum of the birds fed multiple probiotics were not significantly different from those of no probiotic groups. There were no significant differences in the $CO_2$ gas emissions of fecal between birds fed with Ds or among birds fed with DW. However, $NH_3$ gas emissions of DW $0.1\%$ were significantly lower (P<0.05) than DW $0\%$. In the results of this study, supplementation of probiotics tended to decrease the serum cholesterol and triglyceride compared to those of control groups and reduction of fecal $NH_3$ gas emission.