• Title/Summary/Keyword: novel grout

Search Result 8, Processing Time 0.023 seconds

Development and Application of Activated Silicate for Chemical Grouting (지반주입용 활성 실리케이트 약액 (ASG) 의 개발 및 적용)

  • 천병식;류동성;조산연
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.131-136
    • /
    • 1999
  • In this study, novel activated silicate grout solution for injection grouting was prepared by the reaction of ordinary waterglass with alkaline earth metal salts mixture by means of the high-speed stirring method with strong shearing force, and its chemical and physical properties were investigated. The variation of its gelation time plotted with the amount of dilution water showed that this novel silicate had better gelation characteristics in comparison with ordinary waterglass. And some other engineering characteristics of this grout such as durability and mechanical properties were investigated experimentally. The whole experimental results established that this novel silicate grout was a good alternative with an existing ordinary waterglass grouting method.

  • PDF

Development & Characteristics of the Permanent Grout based on Colloidal Silica (실리카 콜로이드를 기재(基材)로 한 항구그라우트(PSG)의 개발과 공학적 특성)

  • Ryu, Dong-Sung;Jeong, Gyung-Hwan;Lee, Sng-Kook;Lee, Jun-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.189-196
    • /
    • 2004
  • In this study, the colloidal silica grouts (PSG) with novel chemical compositions for permanent reinforcement and water cut-off of the ground were prepared and their engineering charateristics were investigated. The optimum mixing recipes for both homogeneous solution grouts and heterogeneous suspension grouts were investigated and established through many repeated lab tests. The various physical properties(such as compressive strength, durability and syneresis) of the grout gels derived from the colloidal silica were investigated and compared with those of the well-known existing watergalss grouts. The all experimental results showed that the novel colloidal silica grouts(PSG) had greatly excellent performances as permanent grouts, especially in comparison with the existing watergalss grouts.

  • PDF

Filtration-induced pressure evolution in permeation grouting

  • Zhou, Zilong;Zang, Haizhi;Wang, Shanyong;Cai, Xin;Du, Xueming
    • Structural Engineering and Mechanics
    • /
    • v.75 no.5
    • /
    • pp.571-583
    • /
    • 2020
  • Permeation grouting is of great significance for consolidating geo-materials without disturbing the original geo-structure. To dip into the filtration-induced pressure increment that dominates the grout penetration in permeation grouting, nonlinear filtration coefficients embedded in a convection-filtration model were proposed, in which the volume of cement particles in grout and the deposited particles of skeleton were considered. An experiment was designed to determine the filtration coefficients and verify the model. The filtration coefficients deduced from experimental data were used in simulation, and the modelling results matched well with the experimental ones. The pressure drop revealed in experiments and captured in modelling demonstrated that the surge of inflow pressure lagged behind the stoppage of flow channels. In addition, both the consideration of the particles loss in liquid grout and the number of filtrated particles on pore walls presented an ideal trend in filtration rate, in which the filtration rate first rose rapidly and then reached to a steady plateau. Finally, this observed pressure drop was extended to the grouting design which alters the water to cement (W/C) ratio so as to alleviate the filtration effect. This study offers a novel insight into the filtration behaviour and has a practical meaning to extend penetration distance.

Study on Material Segregation of Grout and Filling Characteristic of Grouting for Post-Tensioned Concrete Beam (PC 그라우트의 재료분리 및 PC 빔 그라우팅 충전성에 관한 연구)

  • Lee, Jun-Ki;Choi, Joon-Ho;Yoon, Jeong-Seob;Cho, In-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.419-426
    • /
    • 2010
  • This paper discusses a series of experiments including material improvement in order to ensure quality of grouting for the post-tensioned structure. In presstressed concrete, grouting refers to the construction procedure of filling empty space of duct enclosing the prestress tendons using cementitious material, To date, adequate quality control of the grouting has not been established in Korea because the relationship between the grouting and durability of post-tensioned structure is not well-recognized. The Korean standard does not consider the important material characteristic, wick effect, which is caused by tendons in the ducts, and furthermore current standard testing method does not quantify reasonable material segregation. As a result, the grout material, which satisfies the current material standards, may well exhibit excessive bleeding of water or shrinkage during construction. In this study, international codes and standards related to grouting were surveyed. The mix proportions of the constituents and novel admixtures were suggested to meet equivalently with these standards. Performance of this enhanced grout was compared with common domestic grouts using the international standard testing method. A series of mock-up specimens considering geometry of PC beam was constructed and grout flow pattern was observed as the grout was injected. It was observed that the grouting performance was highly influenced by material properties and filling characteristic can be varied depending on geometry of ducts.

Similitude Law on Material Non-linearity for Seismic Performance Evaluation of RC Columns (RC기둥의 내진성능평가를 위한 재료비선형 상사법칙)

  • Lee, Do-Keun;Cho, Jae-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.409-417
    • /
    • 2010
  • This paper discusses a series of experiments including material improvement in order to ensure quality of grouting for the post-tensioned structure. In prestressed concrete, grouting refers to the construction procedure of filling empty space of duct enclosing with strands using cementitious material, To date, adequate quality control of the grouting has not been established in Korea because the relationship between the grouting and durability of post-tensioned structure is not well-recognized. The Korean standard does not consider the important material characteristic, wick effect, which is caused by strands in the ducts and current standard testing method unlikely quantify reasonable material segregation. As a result, the grout material, which meets the current material standards, may exhibit excessive bleeding water or shrinkage during construction. In this study, international codes and standards related to grouting were surveyed. The ratio of constituents and novel admixtures were suggested to meet equivalently with these standards. Performance of this enhanced grout was compared to common domestic grout using the international standard testing method. A series of mock-up specimens considering geometry of PC beam was constructed and grout flow pattern was observed as the grout was injected. It was observed that the grouting performance was highly influenced by material properties and filling characteristic can be varied depending on geometry of ducts.

Improving support performances of cone bolts by a new grout additive and energy absorber

  • Komurlu, Eren
    • Advances in materials Research
    • /
    • v.11 no.3
    • /
    • pp.237-250
    • /
    • 2022
  • The cone bolts with expanded front ends supply improved anchoring performances and increase energy absorbing capacities due to ploughing in the grouted drills. Within this study, use of a novel energy absorber for the cone bolt heads were investigated to assess its design in terms of supplying high support performances. Additionally, different grout material designs were tested to investigate whether the energy absorption capacities of the rock bolts can be improved using a silicone based thermoset polymer (STP) additive. To determine load bearing and energy absorption capacities, a series of deformation controlled pull-out tests were carried out by using bolt samples grouted in rock blocks. According to the results obtained from this study, maximum load bearing capacities of cone bolts are similar and mostly depend on the steel material strength, whereas the energy absorption capacity was determined to significantly vary in accordance with the displacement limits of the shanks. As a result of using STP additive and new polyamide absorber rings, displacement limits without the steel failure increase. The STP additive was found to improve the energy absorption capacities of grouted cone bolts. The absorber rings designed within this study were also assessed to be highly effective and able to double up the energy absorption capacities of the cone bolts.

A new geopolymeric grout blended completely weathered granite with blast-furnace slag

  • Zhang, Jian;Li, Shucai;Li, Zhaofeng;Li, Hengtian;Du, Junqi;Gao, Yifan;Liu, Chao;Qi, Yanhai;Wang, Wenlong
    • Advances in concrete construction
    • /
    • v.9 no.6
    • /
    • pp.537-545
    • /
    • 2020
  • In order to reduce the usage of cement slurry in grouting engineering and consume the tunnel excavation waste soil, a new geopolymeric grouting material (GGM) was prepared by combine completely weathered granite (CWG) and blast-furnace slag (BFS), which can be applied to in-situ grouting treatment of completely weathered granite strata. The results showed CWG could participate in the geopolymerization process, and GGM slurry has the characteristics of short setting time, high flowability, low viscosity, high stone rate and high mechanical strength, and a design method of grouting pressure based on viscosity evolution was proposed. By adjusted the content of completely weathered granite and alkali activator concentration, the setting time of GGM were ranged from 5 to 30 minutes, the flowability was more than 23.5 cm, the stone rate was higher than 90%, the compressive strength of 28 days were 7.8-16.9 MPa, the porosity were below 30%. This provides a novel grouting treatment and utilizing excavated soil of tunnels in the similar strata.

Performance monitoring of timber structures in underground construction using wireless SmartPlank

  • Xu, Xiaomin;Soga, Kenichi;Nawaz, Sarfraz;Moss, Neil;Bowers, Keith;Gajia, Mohammed
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.769-785
    • /
    • 2015
  • Although timber structures have been extensively used in underground temporary supporting system, their actual performance is poorly understood, resulting in potentially conservative and over-engineered design. In this paper, a novel wireless sensor technology, SmartPlank, is introduced to monitor the field performance of timber structures during underground construction. It consists of a wooden beam equipped with a streamlined wireless sensor node, two thin foil strain gauges and two temperature sensors, which enables to measure the strain and temperature at two sides of the beam, and to transmit this information in real-time over an IPv6 (6LowPan) multi-hop wireless mesh network and Internet. Four SmartPlanks were deployed at the London Underground's Tottenham Court Road (TCR) station redevelopment site during the Stair 14 excavation, together with seven relay nodes and a gateway. The monitoring started from August 2013, and will last for one and a half years until the Central Line possession in 2015. This paper reports both the short-term and long-term performances of the monitored timber structures. The grouting effect on the short-term performance of timber structures is highlighted; the grout injection process creates a large downward pressure on the top surface of the SmartPlank. The short and long term earth pressures applied to the monitored structures are estimated from the measured strains, and the estimated values are compared to the design loads.