• Title/Summary/Keyword: novel compound

Search Result 548, Processing Time 0.024 seconds

Novel Mononuclear Ruthenium(II) Compounds in Cancer Therapy

  • Anchuri, Shyam Sunder;Thota, Sreekanth;Yerra, Rajeshwar;Devarakonda, Krishna Prasad;Dhulipala, Satyavati
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3293-3298
    • /
    • 2012
  • The present study was conducted to evaluate in vivo anticancer activity of two novel mononuclear ruthenium(II) compounds, namely Ru(1,10-phenanthroline)$_2$(2-nitro phenyl thiosemicarbazone)$Cl_2$(Compound $R_1$) and Ru (1,10-phenanthroline)$_2$(2-hydroxy phenyl thiosemicarbazone)$Cl_2$(Compound $R_2$) against Ehrlich ascites carcinoma (EAC) mice and in vitro cytotoxic activity against IEC-6 (small intestine) cell lines and Artemia salina nauplii using MTT [(3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide)] and BLT [brine shrimp lethality] assays respectively. The tested ruthenium compounds at the doses 2 and 4 mg/kg body weight showed promising biological activity especially in decreasing the tumor volume, viable ascites cell counts and body weights. These compounds prolonged the life span (% ILS), mean survival time (MST) of mice bearing-EAC tumor. The results for in vitro cytotoxicity against IEC-6 cells showed the ruthenium compound $R_2$ to have significant cytotoxic activity with a $IC_{50}$ value of $20.0{\mu}g/mL$ than $R_1$ ($IC_{50}=78.8{\mu}g/mL$) in the MTT assay and the $LC_{50}$ values of $R_1$ and $R_2$ compounds were found to be 38.3 and $43.8{\mu}g/mL$ respectively in the BLT assay. The biochemical and histopathological results revealed that there was no significant hepatotoxicity and nephrotoxicity associated with the ruthenium administration to mice.

Synthesis, Crystal Structure and Quantum Chemistry of a Novel Schiff Base N-(2,4-Dinitro-phenyl)-N'-(1-phenyl-ethylidene)-hydrazine

  • Ji, Ning-Ning;Shi, Zhi-Qiang;Zhao, Ren-Gao;Zheng, Ze-Bao;Li, Zhi-Feng
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.881-886
    • /
    • 2010
  • A novel Schiff base N-(2,4-dinitro-phenyl)-N'-(1-phenyl-ethylidene)-hydrazine has been synthesized and structurally characterized by X-ray single crystal diffraction, elemental analysis, IR spectra and UV-vis spectrum. The crystal belongs to monoclinic with space group P21/n. The molecules are connected via intermolecular O-$H{\cdots}O$ hydrogen bonds into 1D infinite chains. The crystal structure is consolidated by the intramolecular N-$H{\cdots}O$ hydrogen bonds. weak intermolecular C-$H{\cdots}O$ hydrogen bonds link the molecules into intriguing 3D framework. Furthermore, Density functional theory (DFT) calculations of the structure, stabilities, orbital energies, composition characteristics of some frontier molecular orbitals and Mulliken charge distributions of the title compound were performed by means of Gaussian 03W package and taking B3LYP/6-31G(d) basis set. The time-dependent DFT calculations have been employed to calculate the electronic spectrum of the title compound, and the UV-vis spectra has been discussed on this basis. The results show that DFT method at B3LYP/6-31G(d) level can well reproduce the structure of the title compound.

Isolation of a Novel Polyphenol from Oolong Tea and Its Effective Prevention of the Gout (우롱차로터 새로운 Polyphenol 분리 및 통풍 예방 효과)

  • An, Bong-Jeun;Lee, Jin-Tae;Bea, Man-Jong
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.970-975
    • /
    • 1998
  • Eighty percent of acetone extract were isolated from the leaves of Korean Oolong tea using Sephadex LH-20, MCI-gel, Fuji gel. The compound reacted the red and the blue with anisaldehyde and $FeCl_3$, respectively. Instrumental analysis of the derivatives of this compound showed that the chemical structure was decided to $epicatechin-(4{\beta}{\rightarrow}8)-epigallocatechin-3-O-gallate$ as a kind of dimeric proanthocyanidine, that bound with -(-)epicatechin and -(-)epigallocatechin-3-O-gallate, at the upper and the lower, respectively. Considering inhibition effect on xanthin oxidase by 62% levels at $50{\;}{\mu}mole$, this compound showed a possibility to be used as a new material for functional food.

  • PDF

Development of RVE Reconstruction Algorithm for SMC Multiscale Modeling (SMC 복합재료 멀티스케일 모델링을 위한 RVE 재구성 알고리즘 개발)

  • Lim, Hyoung Jun;Choi, Ho-Il;Yoon, Sang Jae;Lim, Sang Won;Choi, Chi Hoon;Yun, Gun Jin
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.70-75
    • /
    • 2021
  • This paper presents a novel algorithm to reconstruct meso-scale representative volume elements (RVE), referring to experimentally observed features of Sheet Molding Compound (SMC) composites. Predicting anisotropic mechanical properties of SMC composites is challenging in the multiscale virtual test using finite element (FE) models. To this end, an SMC RVE modeler consisting of a series of image processing techniques, the novel reconstruction algorithm, and a FE mesh generator for the SMC composites are developed. First, micro-CT image processing is conducted to estimate probabilistic distributions of two critical features, such as fiber chip orientation and distribution that are highly related to mechanical performance. Second, a reconstruction algorithm for 3D fiber chip packing is developed in consideration of the overlapping effect between fiber chips. Third, the macro-scale behavior of the SMC is predicted by the multiscale analysis.

Identification of Novel Compound Heterozygous Mutations in the ACADS Gene of an Asymptomatic Korean Newborn with Short Chain Acyl-CoA Dehydrogenase Deficiency by Tandem Mass Spectrometry

  • Cheon, Chong-Kun;Choi, Hyung-Soon;Kim, Su-Yung;Yoo, Han-Wook;Kim, Gu-Hwan
    • Journal of Genetic Medicine
    • /
    • v.9 no.1
    • /
    • pp.42-46
    • /
    • 2012
  • Short-chain acyl-CoA dehydrogenase deficiency (SCADD; OMIM # 201470) is an autosomal recessive inborn error of mitochondrial fatty acid ${\beta}$-oxidation, presenting with a variety of clinical signs and symptoms. Developmental delay, hypertonia or hypotonia, ketotic hypoglycemia, and epilepsy are most frequently reported. In general, patients diagnosed through newborn screening have shown normal growth and development in contrast to those diagnosed as a result of clinically initiated evaluations. Here, the case of an asymptomatic Korean newborn with SCADD identified by tandem mass spectrometry is reported. The patient showed an elevated concentration of butyrylcarnitine detected on newborn screening. Urinary excretion of ethylmalonic acid was elevated by urine organic acid analysis. To confirm the diagnosis of SCADD, a direct sequencing analysis of 10 coding exons and the exon-intron boundaries of the ACADS gene were performed. Genetic analysis of ACADS showed the following novel compound heterozygous missense mutations: c.277C>A (p.Leu93Ile) on exon3 and c.682G>A (p.Glu288Lys) on exon6. These results will provide further evidence of mutational heterogeneity for SCADD.

Novel GPR43 Agonists Exert an Anti-Inflammatory Effect in a Colitis Model

  • Park, Bi-Oh;Kang, Jong Soon;Paudel, Suresh;Park, Sung Goo;Park, Byoung Chul;Han, Sang-Bae;Kwak, Young-Shin;Kim, Jeong-Hoon;Kim, Sunhong
    • Biomolecules & Therapeutics
    • /
    • v.30 no.1
    • /
    • pp.48-54
    • /
    • 2022
  • GPR43 (also known as FFAR2), a metabolite-sensing G-protein-coupled receptor stimulated by short-chain fatty acid (SCFA) ligands is involved in innate immunity and metabolism. GPR43 couples with Gαi/o and Gαq/11 heterotrimeric proteins and is capable of decreasing cyclic AMP and inducing Ca2+ flux. The GPR43 receptor has additionally been shown to bind β-arrestin 2 and inhibit inflammatory pathways, such as NF-κB. However, GPR43 shares the same ligands as GPR41, including acetate, propionate, and butyrate, and determination of its precise functions in association with endogenous ligands, such as SCFAs alone, therefore remains a considerable challenge. In this study, we generated novel synthetic agonists that display allosteric modulatory effects on GPR43 and downregulate NF-κB activity. In particular, the potency of compound 187 was significantly superior to that of pre-existing compounds in vitro. However, in the colitis model in vivo, compound 110 induced more potent attenuation of inflammation. These novel allosteric agonists of GPR43 clearly display anti-inflammatory potential, supporting their clinical utility as therapeutic drugs.

Biological Evaluation of Nargenicin and Its Derivatives as Antimicrobial Anti-inflammatory Agents (토양 균주 발효 추출물 Nargenicin 및 그 유도체의 항생제 대체 효과능 평가)

  • Cho, Seung-Sik;Hong, Joon-Hee;Chae, Jung-Il;Shim, Jung-Hyun;Na, Chong-Sam;Yoo, Jin-Cheol
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.3
    • /
    • pp.469-481
    • /
    • 2014
  • IIn vitro antimicrobial and anti-inflammatory activities of nargenicin and its derivatives were investigated. Nargenicin, an unusual macrolide antibiotic with potent anti-MRSA (methicilin-resistant Staphylococcus aureus) activity, was purified from the culture broth of Nocardia sp. CS682. And variety of novel nargenicin derivatives was synthesized from nargenicin. Two compounds (4 and 5) exhibit a broad spectrum of antimicrobial activities against infectious bacteria. The antimicrobial activity of derivatives against fifteen organisms was assessed using the minimum inhibitory concentration (MIC). The MIC values were in the ranges of $0.15{\sim}80{\mu}g/mL$ (w/v) for compound 1 and 2, $5{\sim}80{\mu}g/mL$ (w/v) for compound 3, $1.25{\sim}40{\mu}g/mL$ (w/v) for compound 4, and $1.25{\sim}80{\mu}g/mL$ (w/v) for compound 5, depending on the pathogens studied. In vitro, we investigated cytotoxicity and inhibition of nitric oxide (NO) production of synthesized compounds 1-5 in Raw 264.7 cells. LPS-induced nitric oxide releases were significantly blocked by compound 3, 4 and 5 in a dose-dependent manner. At high concentrations ($5{\mu}g/mL$) compound 5 inhibited the NO production by 95%. Compound 4 inhibited the release of NO in LPS-activated Raw 264.7 cells by 75% at the concentration of $10{\mu}g/mL$. Compound 3 inhibited the release of NO in LPS-activated Raw 264.7 cells by 65% at the concentration of $100{\mu}g/mL$. On the other hand, nargenicin, compound 1 and 2 did not inhibit NO production. These results demonstrated that compound 4 and 5 displayed antimicrobial activity and blocked LPS-induced pro-inflammatory mediators such as NO in macrophages, which might be responsible for its therapeutic application.

Synthesis and Biological Evaluation of Heterocyclic Ring-substituted Chalcone Derivatives as Novel Inhibitors of Protein Tyrosine Phosphatase 1B

  • Chen, Zhen-Hua;Sun, Liang-Peng;Zhang, Wei;Shen, Qiang;Gao, Li-Xin;Li, Jia;Piao, Hu-Ri
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1505-1508
    • /
    • 2012
  • Protein tyrosine phosphatase 1B (PTP1B) is a key factor in negative regulation of the insulin pathway, and is a promising target for the treatment of type-II diabetes, obesity and cancer. Herein, compound ($\mathbf{4}$) was first observed to have moderate inhibitory activity against PTP1B with an $IC_{50}$ value of $13.72{\pm}1.53{\mu}M$. To obtain more potent PTP1B inhibitors, we synthesized a series of chalcone derivatives using compound ($\mathbf{4}$) as the lead compound. Compound $\mathbf{4l}$ ($IC_{50}=3.12{\pm}0.18{\mu}M$) was 4.4-fold more potent than the lead compound $\mathbf{4}$ ($IC_{50}=13.72{\pm}1.53{\mu}M$), and more potent than the positive control, ursolic acid ($IC_{50}=3.40{\pm}0.21{\mu}M$). These results may help to provide suitable drug-like lead compounds for the design of inhibitors of PTP1B as well as other PTPs.

Compound IKD-8344, a Selective Growth Inhibitor Against the Mycelial Form of Candida albicans, Isolated from Streptomyces sp. A6792

  • HWANG EUI IL;YUN BONG SIK;YEO WOON HYUNG;LEE SANG HAN;MOON JAE SUN;KIM YOUNG KOOK;LIM SE JIN;KIM SUNG UK
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.909-912
    • /
    • 2005
  • In the course of screening for selective growth inhibitors against the mycelial form of Candida albicans, we isolated a Streptomyces sp. A6792 from soils. The inhibitor was isolated from the above bacterium and identified through several spectral analyses with UV and mass spectrophotometries, and various NMR. The compound was determined to be a macrocyclic dilactone antibiotic, IKD-8344 (molecular weight: 844, molecular formula: $C_{48}H_{76}O_{12}$). The compound selectively inhibited the growth of mycelial form of C. albicans with an MIC of 6.25 ${\mu}g/ml$. It also exhibited strong inhibitory effect preferentially on the mycelial form of various Candida spp. including C. krusei, C. tropicalis, and C. lusitaniae, with MICs ranging from 1.56 to 25 ${\mu}g$/ml. Furthermore, the compound showed no significant toxicity against SPF ICR mice up to 60 mg/kg. These results suggest that IKD-8344 is a useful lead compound for the development of novel antifungal agents, based on the preferential growth inhibition against Candida spp.

Isolation of Antifungal Compound and Biocontrol Potential of Lysobacter antibioticus HS124 against Fusarium Crown Rot of Wheat

  • Monkhung, Sararat;Kim, Yun-Tae;Lee, Yong-Seong;Cho, Jeong-Yong;Moon, Jae-Hak;Kim, Kil-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.393-400
    • /
    • 2016
  • Fusarium graminearum is the main cause of substantial economic loss in wheat production. The aim of this study is to investigate biocontrol potential of Lysobacter antibioticus HS124 against F. graminearum and to purify an antifungal compound. In preliminary study, n-butanol crude extract revealed destructive alterations in the hyphal morphology of F. graminearum and almost degraded with $1,000{\mu}g\;mL^{-1}$ concentration. For further study, the antifungal compound extracted from the n-butanol crude extract of L. antibioticus HS124 was identified as N-Butyl-tetrahydro-5-oxofuran-2-carboxamide ($C_9H_{16}NO_3$) using NMR ($^1H-NMR$, $^{13}C-NMR$, $^1H-^1H\;COSY$, HMBC, and HMQC), and HR-ESI-MS analysis. To our knowledge, N-Butyl-tetrahydro-5-oxofuran-2-carboxamide may be a novel compound with molecular weight of 186.1130. The minimum inhibitory concentration value of antifungal compound was $62.5{\mu}g\;mL^{-1}$ against F. graminearum. In an in vivo pot experiment, crown rot disease from F. graminearum was inhibited when wheat seeds were treated with both HS124 culture and F. graminearum. Growth of wheat seedling was enhanced by treatment of HS124 compared to control. Our results suggest that L. antibioticus HS124 characterized in this study could be successfully used to control F. graminearum and could be used as an alternative to chemical fungicides in modern agriculture.