• Title/Summary/Keyword: novel compound

Search Result 548, Processing Time 0.027 seconds

Alkoxybenzylcyanoguanidine Analogs as a Novel Class of Inhibitors for Restenosis

  • Lee, Sun-Kyung;Yi, Kyu-Yang;Hwang, Sun-Kyung;Suh, Jee-Hee;Lee, Byung-Ho;Yoo, Sung-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.1003-1008
    • /
    • 2004
  • A novel class of alkoxybenzylcyanoguanidine analogs as the inhibitors of restenosis was discovered, which showed the inhibitory effects on angiotensin II-induced cell proliferation, determined by $[^3H]$thymidine incorporation method. The compound, N'-(4-nitrophenyl)guanidine analog 19, showed 62% inhibition of $[^3H]$thymidine incorporation at 1 ${\mu}M$ concentration. In addition, the compound 19 inhibited intimal thickening dose-dependently after balloon injury, which suggests the therapeutic potential for restenosis.

Biocontrol of Tomato Fusarium Wilt by a Novel Genotype of 2,4-Diacetylphloroglucinol-producing Pseudomonas sp. NJ134

  • Kang, Beom-Ryong
    • The Plant Pathology Journal
    • /
    • v.28 no.1
    • /
    • pp.93-100
    • /
    • 2012
  • The rhizobacterium NJ134, showing strong $in$ $vitro$ antifungal activity against $Fusarium$ $oxysporum$, was isolated from field grown tomato plants and identified as $Pseudomonas$ sp. based on 16S ribosomal DNA sequence and biochemical analyses. The antifungal compound purified by gas chromatography-mass spectrometry, infrared, and nuclear magnetic resonance analyses from NJ134 cultures was polyketide 2,4-diacetylphloroglucinol (DAPG). Analysis of the sequence of part of one of the genes associated with DAPG synthesis, $phlD$, indicated that the DAPG producer NJ134 was a novel genotype or variant of existing genotype termed O that have been categorized based on isolates from Europe and North America. A greenhouse study indicated that about $10^8$ CFU/g of soil NJ134 culture application was required for effective biocontrol of Fusarium wilt in tomato. These results suggest that a new variant genotype of a DAPG-producing strain of $Pseudomonas$ has the potential to control Fusarium wilt under the low disease pressure conditions.

Synthesis and Physicochemical Studies on a Novel Cephalosporin, DWC-751 (신규 세파로스포린 항생제 DWC-751 합성과 물성연구)

  • 김명구;안상근;최영기;문치장;오세한;성무제;윤길중;신종만;김학형
    • Biomolecules & Therapeutics
    • /
    • v.1 no.1
    • /
    • pp.103-108
    • /
    • 1993
  • The synthesis and physicochemical properties of a novel cephalosporin, DWC-751 are described. DWC -751, (6R , 7R)-7-[ (Z)-2-(2-aminothiazol-4-yl)-2- methoxyiminoacetamido]-3-[(1-methylbenzotriazol-3-ium) methyl]-ceph-3-em-4-carboxylate monosulfate($IV_{\alpha}$) was conveniently obtained by the conversion of compound (IV) into the crystalline monosulfate. Adjusting pH 4.8-5.2 in aqeous solution of the crude crystalline, compound(IV) in the form of a crystalline pentahydrate was prepared with a high degree of purity. The influence of the various organic and inorganic acids on the solubility of compoud(IV) and its salts, was examined. Particularly, the solubility of DWC-751 was 92 mg/mι at pH 1.7 and 233 mg/mι at pH 3.0. DWC-751 showed a broad antimicrobial spectrum against gram-positive and negative bacteria.

  • PDF

Synthesis of a Novel Nitrogen-Phosphorus Flame Retardant Based on Phosphoramidate and Its Application to PC, PBT, EVA, and ABS

  • Nguyen, Congtranh;Kim, Jin-Hwan
    • Macromolecular Research
    • /
    • v.16 no.7
    • /
    • pp.620-625
    • /
    • 2008
  • A novel nitrogen-phosphorus compound, diphenyl piperazine-1,4-diylbis(methylphosphinate)(DPPMP) was synthesized via a two step reaction and its flame retarding efficiency as a single component additive was investigated. The success of synthesis was confirmed by FTIR and $^1H$ and $^{31}P$ NMR analysis. The product was mixed with polycarbonate (PC), poly(butylene terephtalate) (PBT), ethylene-vinyl-acetate copolymer (EVA), and acrylonitrile-butadiene-styrene copolymer (ABS). The flame-retarding efficiency was evaluated using the limiting oxygen index (LOI) and the UL-94 vertical test methods. The addition of DPPMP enhanced the flame retardancy of the polymers and the V-0 ratings were obtained for the polymers examined in this study at a loading of 7-30 wt%. The gas-phase flame retardancy mode of action was suggested for this material from the thermogrametry experiment results.

A novel quinoline derivative with high affinity for the translocator protein

  • Kwon, Young-Do;Kim, Hee-Kwon
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.2
    • /
    • pp.95-97
    • /
    • 2015
  • The translocator protein (TSPO) is one of the important targets for Positron Emission Tomography (PET) imaging because it is associated with brain cancer, stroke, and neurodegeneration. Recently, a novel quinoline compound with high affinity agent for the translocator protein has been developed. In this highlight review, major studies for the quinoline compound are described.

A case of Galloway-Mowat syndrome with novel compound heterozygous variants in the WDR4 gene

  • Kim, Hamin;Lee, Hyunjoo;Lee, Young-Mock
    • Journal of Genetic Medicine
    • /
    • v.17 no.2
    • /
    • pp.97-101
    • /
    • 2020
  • The combination of central nervous system abnormalities and renal impairment is a notable characteristic of Galloway-Mowat syndrome (GAMOS), a disease which often accompanies microcephaly, developmental delay, and nephrotic syndrome. Many subtypes exist having various phenotypes and genotypes, and many genetic causes are still being identified. An 18-month-old boy first visited our clinic for seizure, delayed development, and microcephaly. During follow-up visits he developed proteinuria and nephrotic syndrome at the age of 6. Nephrotic syndrome became refractory to treatment. These phenotypes were suggestive of GAMOS. Next generation sequencing was performed for genetic analysis and revealed novel compound heterozygous variants in the WDR4 gene: c.494G>A (p.Arg165Gln) and c.540C>G (p.Ile180Met). This is the first case in Korea of GAMOS involving the WDR4 gene.

Platelet Anti-aggregating and Anti-oxidative Activities of 12-O-(4'-O-methyl-galloyl)-bergenin, a Novel Compound Isolated from Crassula cv. "Himaturi"

  • Lee, Yong-Yook;Jang, Dae-Song;Jin, Jing-Ling;YunChoi, Hye-Sook
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.193.3-194
    • /
    • 2003
  • Platelets play critical roles in both hemostasis and thrombosis. It was reported that platelet aggregation is associated with an increase in superoxide production and can be inhibited by hydroxyl radical scavengers. In the course of our search for the anti-platelet, anti-coagulant and/or anti-oxidative components from plants, the MeOH extract of Crassula cv. "Himaturi" (Crassulaceae) was observed to have both anti-aggregatory and anti-coagulant effects. A novel compound, 12-O-(4'-O-methyl-galloyl)-bergenin (1), was isolated as an active component from the EtOAC soluble fraction. (omitted)

  • PDF

In Silico Screening of a Novel Inhibitor of β-Ketoacyl Acyl Carrier Protein Synthase I

  • Lee, Jee-Young;Jeong, Ki-Woong;Lee, Ju-Un;Kang, Dong-Il;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1645-1649
    • /
    • 2011
  • [ ${\beta}$ ]Ketoacyl acyl carrier protein synthase I (KAS I) is involved in the elongation of unsaturated fatty acids in bacterial fatty acid synthesis and a therapeutic target of designing novel antibiotics. In this study, we performed receptor-oriented pharmacophore-based in silico screening of E. coli KAS I (ecKAS I) with the aim of identifying novel inhibitors. We determined one pharmacophore map and selected 8 compounds as candidates ecKAS I inhibitors. We discovered one antimicrobial compound, YKAe1008, N-(3-pyridinyl) hexanamide, displaying minimal inhibitory concentration (MIC) values in the range of 128-256 ${\mu}g/mL$ against MRSA and VREF. YKAe1008 was subsequently assessed for binding to ecKAS I using saturation-transfer difference NMR spectroscopy. Further optimization of this compound will be carried out to improve its antimicrobial activity and membrane permeability against bacterial cell membrane.

Conjugated Oligomers Combining Fluorene and Thiophene Units : Towards Supramolecular Electronics

  • Leclere, Ph.;Surin, M.;Sonar, P.;Grimsdale, A.C.;Mllen, K.;Cavallini, M.;Biscarini, F.;Lazzaroni, R.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.228-228
    • /
    • 2006
  • Conjugated oligomers, used as models for fluorene-thiophene copolymers, are compared in terms of the microscopic morphology of thin deposits and the optical properties. The AFM images and the solid-state absorption and emission spectra are interpreted in line with the structural data, in terms of the assembly of the conjugated molecules. The compound with a terthiophene central unit and fluorene end-groups shows well-defined monolayer-by-monolayer assembly into micrometer-long strip-like structures, with a crystalline herringbone-type organization within the monolayers. Polarized confocal microscopy indicates a strong orientation of the crystalline domains within the stripes. In contrast, the compound with a terfluorene central unit and thiophene end groups forms no textured aggregates. The difference in behavior between the two compounds most probably originates from their different capability of forming densely-packed assemblies of ${\pi-pi}$ interacting molecules. These assemblies are used as active elements in organic field effect transistors designed by using soft lithography technique.

  • PDF

Novel ATP8B1 Gene Mutations in a Child with Progressive Familial Intrahepatic Cholestasis Type 1

  • Rhee, Eun Sang;Kim, Yu Bin;Lee, Sunghee;Oh, Seak Hee;Lee, Beom Hee;Kim, Kyung Mo;Yoo, Han-Wook
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.22 no.5
    • /
    • pp.479-486
    • /
    • 2019
  • Progressive familial intrahepatic cholestasis (PFIC) is a group of severe genetic disorders, inherited in an autosomal recessive manner, causing cholestasis of hepatocellular origin, later progressing to biliary cirrhosis and liver failure. This is the first report of PFIC type 1 with novel compound heterozygous mutations in Korea. The patient was presented with intrahepatic cholestasis, a normal level of serum ${\gamma}-glutamyl$ transferase, steatorrhea, and growth failure. Genetic testing of this patient revealed novel compound heterozygous mutations (p.Glu585Ter and p.Leu749Pro) in the ATP8B1 gene. After a liver transplantation at age 19 months, the patient developed severe post-transplant steatohepatitis.