• Title/Summary/Keyword: normalized load impedance

Search Result 4, Processing Time 0.02 seconds

Implementation of a Labview Based Time-Frequency Domain Reflectometry Real Time System for the Load Impedance Measurement (부하 임피던스 측정을 위한 랩뷰기반 시간-주파수 영역 반사파 실시간 시스템 구현)

  • Park, Tae-Geun;Kwak, Ki-Seok;Park, Jin-Bae;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1803-1804
    • /
    • 2006
  • The purpose of this paper is to implement a Labview based TFDR Real Time system through the instruments of Pci eXtensions for Instrumentation(PXI). The proposed load impedance measurement algorithm was verified by experiments via the implemented real time system. The TFDR real time system consisted of the reference signal design, signal generation, signal acquisition, algorithm execution and results display parts. To implement real time system, all of the parts wore programmed by the Labview which is one of graphical programming languages. In the application software implemented by the Labview we were able to design a suitable reference signal according to the length and frequency attenuation characteristics of the target cable and controled the arbitrary waveform generator(ZT500PXI) of the signal generation part and the digital storage oscilloscope(ZT430PXI) of the signal acquisition part. By using the TFDR real time system with the terminal resistor on the target cable, we applied to the load impedance measurements. In the proposed load impedance algorithm a normalized time-frequency cross correlation function and a cross time-frequency distribution function was employed to calculate the reflection coefficient and phase difference between the input and the reflected signals.

  • PDF

A Study on the Design of the Class E Resonant Rectifier with a Series Capacitor (직력 캐패시터를 가진 E급 공진형 정류기 설계에 관한 연구)

  • 김남호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.343-352
    • /
    • 1998
  • Higher frequency of energy transfer or at least energy conversion has to be used in order to reduce the size of inductors and capacitors required in the power supplies. Conventional PWM switching-mode power supplies have a limitation of operating frequency due to switching losses in the switching transistors and rectifier diodes. Means of reducing switching losses have been developed for high-frequency resonant amplifiers or more exactly dc/ac inverters. Because of smooth current and voltage waveforms resonant convertesrs havelower device switching losses and stresses lower electromagnetic interference(EMI) and lower noise than PWM converters. Therefore in this paper design equations of Classs E resonant low dv/dt rectifier with a series resonant capacitor drived using Fourier series techniques. The theory is compared with simulation results obtained for the rectifier operating at 10[MHz] ac input and 5[V] coutput.

  • PDF

Systematic Analysis for the Effects of Atmospheric Pollutants in Cathode Feed on the Performance of Proton Exchange Membrane Fuel Cells

  • Yoon, Young-Gon;Choi, Insoo;Lee, Chang-Ha;Han, Jonghee;Kim, Hyoung-Juhn;Cho, EunAe;Yoo, Sung Jong;Nam, Suk Woo;Lim, Tae-Hoon;Yoon, Jong Jin;Park, Sehkyu;Jang, Jong Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3475-3481
    • /
    • 2014
  • This paper describes how primary contaminants in ambient air affect the performance of the cathode in fuel cell electric vehicle applications. The effect of four atmospheric pollutants ($SO_2$, $NH_3$, $NO_2$, and CO) on cathode performance was investigated by air impurity injection and recovery test under load. Electrochemical analysis via polarization and electrochemical impedance spectroscopy was performed for various concentrations of contaminants during the impurity test in order to determine the origins of performance decay. The variation in cell voltage derived empirically in this study and data reported in the literature were normalized and juxtaposed to elucidate the relationship between impurity concentration and performance. Mechanisms of cathode degradation by air impurities were discussed in light of the findings.

Piezoelectric Energy Harvesting Characteristics of Trapezoidal PZT/Ag Laminate Cantilever Generator (사다리꼴 PZT/Ag Laminate 외팔보 발전기의 압전 에너지 하베스팅 특성)

  • Na, Yong-Hyeon;Lee, Min-Seon;Yun, Ji-Sun;Hong, Youn-Woo;Paik, Jong-Hoo;Cho, Jeong-Ho;Lee, Jung Woo;Jeong, Young-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.7
    • /
    • pp.462-468
    • /
    • 2018
  • The piezoelectric energy harvesting characteristics of a trapezoidal cantilever generator with lead zirconate titanate (PZT) laminate were investigated with various Ag inner electrodes. The piezoelectric mode of operation was a transverse mode by using a planar electrode pattern. The piezoelectric cantilever generator was fabricated using trapezoidal cofired-PZT/Ag laminates by five specimens of 2, 3, 4, 7, and 13 layers of Ag. As the number of Ag electrodes increased, impedance and output voltage at resonant frequency significantly decreased, and capacitance and output current showed an increasing tendency. A maximum output power density of $7.60mW/cm^3$ was realized for the specimen with seven Ag layers in the optimal condition of acceleration (1.2 g) and resistive load ($600{\Omega}$), which corresponds to a normalized power factor of $5.28mW/g^2{\cdot}cm^3$.