• Title/Summary/Keyword: normalized k

Search Result 2,395, Processing Time 0.033 seconds

Detection of Micro-Crack Using a Nonlinear Ultrasonic Resonance Parameters (비선형 초음파공명 특성을 이용한 미세균열 탐지)

  • Cheong, Yong-Moo;Lee, Deok-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.369-375
    • /
    • 2012
  • In order to overcome the detection limit by the current nondestructive evaluation technology, a nonlinear resonant ultrasound spectroscopy(NRUS) technique was applied for detection of micro-scale cracks in a material. A down-shift of the resonance frequency and a variation of normalized amplitude of the resonance pattern were suggested as the nonlinear parameter for detection of micro-scale cracks in a materials. A natural-like crack were produced in a standard compact tension(CT) specimen by a low cycle fatigue test and the resonance patterns were acquired in each fatigue step. As the exciting voltage increases, a down-shift of resonance frequency were increases as well as the normalized amplitude decrease. This nonlinear effects were significant and even greater in the cracked specimen, but not observed in a intact specimen.

Agricultural Application of Ground Remote Sensing (지상 원격탐사의 농업적 활용)

  • Hong, Soon-Dal;Kim, Jai-Joung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.2
    • /
    • pp.92-103
    • /
    • 2003
  • Research and technological advances in the field of remote sensing have greatly enhanced the ability to detect and quantify physical and biological stresses that affect the productivity of agricultural crops. Reflectance in specific visible and near-infrared regions of the electromagnetic spectrum have proved useful in detection of nutrient deficiencies. Especially crop canopy sensors as a ground remote sensing measure the amount of light reflected from nearby surfaces such as leaf tissue or soil and is in contrast to aircraft or satellite platforms that generate photographs or various types of digital images. Multi-spectral vegetation indices derived from crop canopy reflectance in relatively wide wave band can be used to monitor the growth response of plants in relation to environmental factors. The normalized difference vegetation index (NDVI), where NDVI = (NIR-Red)/(NIR+Red), was originally proposed as a means of estimating green biomass. The basis of this relationship is the strong absorption (low reflectance) of red light by chlorophyll and low absorption (high reflectance and transmittance) in the near infrared (NIR) by green leaves. Thereafter many researchers have proposed the other indices for assessing crop vegetation due to confounding soil background effects in the measurement. The green normalized difference vegetation index (GNDVI), where the green band is substituted for the red band in the NDVI equation, was proved to be more useful for assessing canopy variation in green crop biomass related to nitrogen fertility in soils. Consequently ground remote sensing as a non destructive real-time assessment of nitrogen status in plant was thought to be useful tool for site specific crop nitrogen management providing both spatial and temporal information.

Dimensional analysis of base-isolated buildings to near-fault pulses

  • Istrati, Denis;Spyrakos, Constantine C.;Asteris, Panagiotis G.;Panou-Papatheodorou, Eleni
    • Structural Engineering and Mechanics
    • /
    • v.75 no.1
    • /
    • pp.33-47
    • /
    • 2020
  • In this paper the dynamic behavior of an isolated building subjected to idealized near-fault pulses is investigated. The building is represented with a simple 2-DOF model. Both linear and non-linear behavior of the isolation system is considered. Using dimensional analysis, in conjunction with closed form mathematical idealized pulses, appropriate dimensionless parameters are defined and self-similar curves are plotted on dimensionless graphs, based on which various conclusions are reached. In the linear case, the role of viscous damping is examined in detail and the existence of an optimum value of damping along with its significant variation with the number of half-cycles is shown. In the nonlinear case, where the behavior of the building depends on the amplitude of the excitation, the benefits of dimensional analysis are evident since the influence of the dimensionless 𝚷-terms is easily examined. Special consideration is given to the normalized strength of the non-linear isolation system that appears to play a complex role which greatly affects the response of the 2-DOF. In the last part of the paper, a comparison of the responses to idealized pulses between a linear fixed-base SDOF and the respective isolated 2-DOF with both linear and non-linear damping is conducted and it is shown that, under certain values of the superstructure and isolation system characteristics, the use of an isolation system can amplify both the normalized acceleration and displacement of the superstructure.

Relationship between Dimensionless Leg Stiffness and Kinetic Variables during Gait Performance, and its Modulation with Body Weight

  • Hyun, Seung Hyun;Ryew, Che Cheong
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.3
    • /
    • pp.249-255
    • /
    • 2016
  • Objective: This purpose of this study was to analyze the relationship between dimensionless leg stiffness and kinetic variables during gait performance, and its modulation with body weight. Method: The study sample consisted of 10 young women divided into 2 groups (Control, n=5 and Obese, n=5). Four camcorders (HDR-HC7/HDV 1080i, Sony Corp, Japan) and one force plate (AMTI., USA) were used to analyze the vertical ground reaction force (GRF) variables, center of pressure (COP), low limb joint angle, position of pelvis center and leg lengths during the stance phase of the gait cycle. Results: Our results revealed that the center of mass (COM) displacement velocity along the y-axis was significantly higher in the obese group than that in control subjects. Displacement in the position of the center of the pelvis center (Z-axis) was also significantly higher in the obese group than that in control subjects. In addition, the peak vertical force (PVF) and dimensionless leg stiffness were also significantly higher in the obese group. However, when normalized to the body weight, the PVF did not show a significant between-group difference. When normalized to the leg length, the PVF and stiffness were both lower in the obese group than in control subjects. Conclusion: In the context of performance, we concluded that increased dimensionless leg stiffness during the gait cycle is associated with increased velocity of COM, PVF, and the change in leg lengths (%).

Time series Analysis of Land Cover Change and Surface Temperature in Tuul-Basin, Mongolia Using Landsat Satellite Image (Landsat 위성영상을 이용한 몽골 Tuul-Basin 지역의 토지피복변화 및 지표온도 시계열적 분석)

  • Erdenesumbee, Suld;Cho, Gi Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.3
    • /
    • pp.39-47
    • /
    • 2016
  • In this study analysis the status of land cover change and land degradation of Tuul-Basin in Mongolia by using the Landsat satellite images that was taken in year of 1990, 2001 and 2011 respectively in the summer at the time of great growth of green plants. Analysis of the land cover change during time series data in Tuul-Basin, Mongolia and NDVI (Normalized Difference Vegetation Index), SAVI (Soil-Adjusted Vegetation Index) and LST (Land Surface Temperature) algorithm are used respectively. As a result shows, there was a decrease of forest and green area and increase of dry and fallow land in the study area. It was be considered as trends to be a land degradation. In addition, there was high correlation between LST and vegetation index. The land cover change or vitality of vegetation which is taken in study area can be closely related to the temperature of the surface.

Analysis of Aroma patterns of Nagaimo, Ichoimo and Tsukuneimo by the Electronic Nose (전자코에 의한 장마, 단마, 대화마의 향기패턴 분석)

  • Lee, Boo-Yong;Yang, Young-Min
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.24-27
    • /
    • 2001
  • This study was performed to analyse aroma patterns of Nagaimo, Ichoimo and Tsukuneimo by the electronic nose with 32 conducting polymer sensors. Response by the electronic nose was analysed by the principal component analysis(PCA). Sensory evaluation also for organoleptic taste and odor of Nagaimo, Ichoimo and Tsukuneimo was performed. Nagaimo was very crunchy and sweet. Tsukuneimo was roasted nutty, hard, viscid taste and sticky. Ichoimo had intensive unique yam flavor and moderate hardness between Nagaimo and Ichoimo. Intensity of Ichoimo for unique yam flavor by the electronic nose was the strongest. The quality factor(QF) of PCA for normalized pattern by thirty two sensors showed less than 2, and so aroma pattern of three yam cultivars had no difference. But when the PCA was performed for normalized pattern by eight selected sensitive sensors, the QF for Nagaimo and Tsukuneimo is 2.057. Thus aroma pattern between Nagaimo and Tsukuneimo could be distinguished.

  • PDF

Anonymity of Medical Brain Images (의료 두뇌영상의 익명성)

  • Lee, Hyo-Jong;Du, Ruoyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.1
    • /
    • pp.81-87
    • /
    • 2012
  • The current defacing method for keeping an anonymity of brain images damages the integrity of a precise brain analysis due to over removal, although it maintains the patients' privacy. A novel method has been developed to create an anonymous face model while keeping the voxel values of an image exactly the same as that of the original one. The method contains two steps: construction of a mockup brain template from ten normalized brain images and a substitution of the mockup brain to the brain image. A level set segmentation algorithm is applied to segment a scalp-skull apart from the whole brain volume. The segmented mockup brain is coregistered and normalized to the subject brain image to create an anonymous face model. The validity of this modification is tested through comparing the intensity of voxels inside a brain area from the mockup brain with the original brain image. The result shows that the intensity of voxels inside from the mockup brain is same as ones from an original brain image, while its anonymity is guaranteed.

Advertisement Coverage Analysis of Social Commerce Service with D2D Communications (D2D 통신을 이용한 소셜커머스 광고 커버리지 분석)

  • Kim, Jun-Seon;Lee, Howon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1547-1556
    • /
    • 2014
  • In this paper, we propose cost-effective device-to-device (D2D) advertisement scenario with properties of proximity and timeliness through the convergence of D2D communications and social commerce service. We numerically analyze advertisement dissemination effect of the proposed scenario according to the number of sectors, and demonstrate the performance of the normalized D2D coverage, the average number of D2D users, and the average D2D coverage per user via intensive simulations. We verify the accuracy of the results for our numerical analysis compared with the simulation results.

A Study on the Partial Discharge Phase Properties with Branch Type Eleotrical Tree Growth in XLPE Cable Insulation (XLPE 케이블 절연체에서의 가지형 전기트리 성장에 따른 부분방전 위상 특성 연구)

  • Gang, Dong-Sik;Seon, Jong-Ho;Kim, Wi-Yeong;Lee, Hong-Sik;Park, Jeong-Hu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.5
    • /
    • pp.213-221
    • /
    • 2002
  • In order to improve the reliability of XLPE cables, it is necessary to find the useful diagnostic parameter according to long term aging. This paper described the change of partial discharge(PD) phase Properties of XLPE cable insulation with branch type electrical tree degradation. for long term aging. To understand the PD Properties with $\phi$ -q-n distributed shape of XLPE insulation, specimens were prepared by 22.9㎸ distribution cable and made in a type of block(16${\times}$16${\times}$3[mm]). Ogura needles having tip radius of l0${\mu}{\textrm}{m}$ were inserted into each block pieces. The measuring system was consisted of PD detector, digitizer for digital conversion, VXI system for signal processing. The PD properties of the specimens were measured from initiation of tree to breakdown and their characteristics were analyzed. We analyzed the relationship between electrical properties(PD Quantity, PD initiation angle, PD extinction angle, PD occurrence angle : (PD extinction angle - PD initiation angle)) and the normalized aging rate. We found PD parameter, PD initiation angle and occurrence angle, which are a useful diagnostic parameter in estimating the branch type electrical tree for XLPE insulation condition.

Estimation of active multiple tuned mass dampers for asymmetric structures

  • Li, Chunxiang;Xiong, Xueyu
    • Structural Engineering and Mechanics
    • /
    • v.29 no.5
    • /
    • pp.505-530
    • /
    • 2008
  • This paper proposes the application of active multiple tuned mass dampers (AMTMD) for translational and torsional response control of a simplified two-degree-of-freedom (2DOF) structure, able to represent the dynamic characteristics of general asymmetric structures, under the ground acceleration. This 2DOF structure is a generalized 2DOF system of an asymmetric structure with predominant translational and torsional responses under earthquake excitations using the mode reduced-order method. Depending on the ratio of the torsional to the translational eigenfrequency, i.e. the torsional to translational frequency ratio (TTFR), of asymmetric structures, the following three cases can be distinguished: (1) torsionally flexible structures (TTFR < 1.0), (2) torsionally intermediate stiff structures (TTFR = 1.0), and (3) torsionally stiff structures (TTFR > 1.0). The even distribution of the AMTMD within the whole width and half width of the asymmetric structure, thus leading to three cases of installing the AMTMD (referred to as the AMTMD of case 1, AMTMD of case 2, AMTMD of case 3, respectively), is taken into account. In the present study, the criterion for searching the optimum parameters of the AMTMD is defined as the minimization of the minimum values of the maximum translational and torsional displacement dynamic magnification factors (DMF) of an asymmetric structure with the AMTMD. The criterion used for assessing the effectiveness of the AMTMD is selected as the ratio of the minimization of the minimum values of the maximum translational and torsional displacement DMF of the asymmetric structure with the AMTMD to the maximum translational and torsional displacement DMF of the asymmetric structure without the AMTMD. By resorting to these two criteria, a careful examination of the effects of the normalized eccentricity ratio (NER) on the effectiveness and robustness of the AMTMD are carried out in the mitigation of both the translational and torsional responses of the asymmetric structure. Likewise, the effectiveness of a single ATMD with the optimum positions is presented and compared with that of the AMTMD.