• Title/Summary/Keyword: normalized difference vegetation index

Search Result 411, Processing Time 0.032 seconds

Identification of Aquatic Plants in the Muncheon Water Reservoir Using Drone-based Information (드론원격정보를 활용한 저수지 수생식물 분포 파악: 경북 문천저수지에서의 적용 예)

  • Lee, Geun-Sang;Kim, Sung-Wook;Lee, Khil-Ha
    • Journal of Environmental Science International
    • /
    • v.26 no.5
    • /
    • pp.685-689
    • /
    • 2017
  • Aquatic plants serve the crucial function of helping to balance water reservoir ecosystem, as they filter and remove major minerals required for algal growth such as nitrogen, ammonia, and nitrates. Aquatic plants provide food, shade, and protection for the aquatic biome in and around the reservoir. Thus, it is important to accurately determine the existence and areal extent of the aquatic plants. In the present study drone-based facilities were used for this purpose. In the Muncheon water reservoir, Gyeongbuk, the Normalized Difference Vegetation Index (NDVI) and Surface Algal Bloom Index (SABI) were used to determine the existence status of the aquatic plants. The data so obtained exhibited reasonable accuracy; drone-based facilities can be used in future to identify the areal extent of aquatic plants.

Applicability Analysis of Drought Index using Multi-temporal NDVI in Korean Peninsula (한반도의 다중시기 NDVI를 이용한 가뭄지수 적용성 분석)

  • 신수현;국민정;이규성
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.203-208
    • /
    • 2004
  • NDVI (Normalized Difference Vegetation Index)는 식생의 건강상태 및 농작물 생산량 추정등에 효과적인 식생지수로, 20년 이상 축적된 MOAA NDVI data의 경우, 식생의 시기적, 계절적 변화탐지가 가능해져 이를 바탕으로 한 가뭄지수들이 개발되어 가뭄 모니터링에 사용되어지고 있다 지난 2001년, 한반도는 기상관측 이래 90년만의 강수량 최저치를 기록하여 전국적인 대 가뭄의 피해를 입었으며, 특히 북한은 유엔이 선정한 가뭄에 가장 취약한 국가로 그로 인한 식량난이 더욱 악화되고 있어 가뭄에 대한 정보는 필수적이라 할 수 있다. 이에 본 연구에서는 1994~2002년의 식물 생장기(growing season : 3~10월)동안 NDVI 10일 최대값 합성영상 (10-day maximum composite data)을 사용하여 남북한으로 나누어진 한반도를 대상으로 각각의 식생현황을 파악 및 비교하고, 산림, 농지, 도시지역별로 NDVI와 가뭄의 주원인인 강수량과의 상관관계로 그 효용성을 분석하였다. 그 결과, NDVI는 1~2개월 전 강수량의 영향이 가장 컸으며, 특히 농지지역에서의 상관계수가 높게 나타났다.

  • PDF

Strategies for Minimizing Forest Disturbance During the Construction of Power Transmission Towers (송전선로 건설에 따른 산림훼손의 최소화 관리방안)

  • 이동근;강현경
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.6
    • /
    • pp.66-78
    • /
    • 2003
  • The purpose of this study was to minimize the forest disturbance around an entry road of a power transmission tower construction site between Taean and Sinsesan, Chungnam. The main study field was classified into existing materials and a GIS, remote sensing analysis, and a field examination. This information was used to identify the most suitable entry road using a degree of green naturality map, eco-naturality map, actual vegetation map, and a forest state map as the existing materials. Also, the study used an normalized difference vegetation index, altitude and slope map in order to make the evaluation materials which used an remote sensing image, and GIS. This data was used to choose an optimum area, and diagnosed the current condition of the vegetation with a field survey of the area. It analyzed vegetation structure, species diversity, the age of trees in a field examination. Subsequently, we proposed four area types based on the analysis results--preservation area, transplantation area, restoration area and development area. As a result, the preservation area was categorized into 8 grades, according to the degree of green naturality, large area of breast diameter at Pinus densiflora community, competition area of Pinus densiflora and Quercus spp. and Quercus spp. community of over 20 years old. A transplantation area established 46 optimum areas according to the GIS analysis and vegetation investigation results. Vegetation restoration plan for disturbance area should be made based on ecological value of existing vegetation to worthwhile area as Quercus spp. mixing forest proposed. The development area selected a ecological worthless place as an artificial forest where Pinus densiflora and Pinus thunbergii growth is poor. This research results suggest that restoration of vegetation will be possible in the real world. Also, ecological restoration guidelines will be made through building and analyzing data base and routine monitoring of transplantation and restoration area.

Estimation of Areal Evapotranspiration Using NDVI and Temperature Data (NDVI와 기온자료를 이용한 광역증발산량의 추정)

  • Shin, Sha-Chul;An, Tae-Young
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.3
    • /
    • pp.79-89
    • /
    • 2004
  • Remote sensing technique is a probable means to estimate distribution of actual evapotranspiration in connection with regional characteristics of vegetation and landuse. The factors controlling evapotranspiration from ground surface are air temperature, humidity, wind, radiation, soil moisture and so on. Not only the vegetation influences directly the evapotranspiration, but also these factors strongly influences the vegetation growth at the area. Therefore, it can be expected that evapotranspiration is highly correlated to vegetation condition. The normalized difference vegetation index (NDVI) showed excellent ability to get the vegetation information. The NDVI is obtained using NOAA/AVHRR have been studied as a tool for vegetation monitoring. In this paper, a simple method to estimate actual avapotranspiration is proposed based on vegetation and meteorological data.

  • PDF

Analysis of Spatial Precipitation Field Using Downscaling on the Korean Peninsula (상세화 기법을 통한 한반도 공간 강우장 분석)

  • Cho, Herin;Hwang, Seokhwan;Cho, Yongsik;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.11
    • /
    • pp.1129-1140
    • /
    • 2013
  • Precipitation is one of the important factors in the hydrological cycle. It needs to understand accurate of spatial precipitation field because it has large spatio-temporal variability. Precipitation data obtained through the Tropical Rainfall Monitoring Mission (TRMM) 3B43 product is inaccurate because it has 25 km space scale. Downscaling of TRMM 3B43 product can increase the accuracy of spatial precipitation field from 25 km to 1 km scale. The relationship between precipitation and the normalized difference vegetation index(NDVI) (1 km space scale) which is obtained from the Moderate Resolution Imaging Spectroradiometers (MODIS) sensor loaded in Terra satellite is variable at different scales. Therefore regression equations were established and these equations apply to downscaling. Two renormalization strategies, Geographical Difference Analysis (GDA) and Geographical Ratio Analysis (GRA) are implemented for correcting the differences between remote sensing-derived and rain gauge data. As for considering the GDA method results, biases, the root mean-squared error (RMSE), MAE and Index of agreement (IOA) is equal to 4.26 mm, 172.16 mm, 141.95 mm, 0.64 in 2009 and 17.21 mm, 253.43 mm, 310.56 mm, 0.62 in 2011. In this study, we can see the 1km spatial precipitation field map over Korea. It will be possible to get more accurate spatial analysis of the precipitation field through using the additional rain gauges or radar data.

Classification of Soil Desalination Areas Using High Resolution Satellite Imagery in Saemangeum Reclaimed Land

  • Lee, Kyung-Do;Baek, Shin-Chul;Hong, Suk-Young;Kim, Yi-Hyun;Na, Sang-Il;Lee, Kyeong-Bo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.426-433
    • /
    • 2013
  • This study was aimed to classify soil desalination area for cultivation using NDVI (Normalized difference vegetation index) of high-resolution satellite image because the soil salinity affects the change of plant community in reclaimed lands. We measured the soil salinity and NDVI at 28 sites in the Saemangeum reclaimed land in June 2013. In halophyte and non-vegetation sites, no relation was found between NDVI and soil salinity. In glycophyte sites, however, we found that the soil salinity was below 0.1% and NDVI ranged from 0.11 to 0.57 which was greater than the other sites. So, we could distinguish the glycophyte sites from the halophyte sites and non-vegetation, and classify the area that soil salinty was below 0.1%. This technique could save the time and labor to measure the soil salinity in large area for agricultural utilization.

Signal of vegetation variability found in regional-scale evapotranspiration as revealed by NDVI and assimilated atmospheric data in Asia

  • Suzuki, Rikie;Masuda, Kooiti;Yasunari, Tetsuzo;Yatagai, Akiyo
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.685-689
    • /
    • 2002
  • This study focused the relationship between the Normalized Difference Vegetation Index (NDVI) and the evapotranspiration (ET) temporal changes. Especially, the interannual change of the NDVI and ET from 1982 to 2000 at regional to continental scales was highlighted mainly over Asia. Monthly global NDVI data were acquired from Pathfinder AVHRR Land (PAL) data (1$\times$1 degree resolution). The monthly ET was estimated from assimilated atmospheric data provided from National Centers for Environmental Prediction (NCEP) (2.5$\times$2.5 degree resolution), and gridded global precipitation data of CPC Merged Analysis of Precipitation (CMAP) (2.5$\times$2.5 degree resolution). Significant positive correlations were found between the NDVI and ET interannual changes in May and June over western Siberia. Moreover, it was revealed that the most of area in Asia has positive correlation coefficient in May and June. These results delineate that the vegetation activity significantly contributes to the ET interannual change over extensive areas.

  • PDF

Intercomparison of interannual changes in NDVI from PAL and GIMMS in relation to evapotranspiration over northern Asia

  • Suzuki Rikie;Masuda Kooiti;Dye Dennis
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.162-165
    • /
    • 2004
  • The authors' previous study found an interannual covariability between actual evapotranspiration (ET) and the Normalized Difference Vegetation Index (NDVI) over northern Asia. This result suggested that vegetation controls interannual variation in ET. In this prior study, NDVI data from the Pathfinder AVHRR Land (PAL) dataset were analyzed. However, studies of NDVI interannual change are subject to uncertainty, because NDVI data often contain errors associated with sensor- and atmosphere-related effects. This study is aimed toward reducing this uncertainty by employing NDVI dataset, from the Global Inventory Monitoring and Modeling Studies (GIMMS) group, in addition to PAL. The analysis was carried out for the northern Asia region from 1982 to 2000. 19-year interannual change in PAL-NDVI and GIMMS-NDVI were both compared with interannual change in model-assimilated ET. Although the correlation coefficient between GIMMS-NDVI and ET is slightly less than for PAL-NDVI and ET, for both NDVI datasets the annual maximum correlation with ET occurs in June, which is near the central period of the growing season. A significant positive correlation between GIMMS-NDVI and ET was observed over most of the vegetated land area in June as well as PAL-NDVI and ET. These results reinforce the authors' prior research that indicates the control of interannual change in ET is dominated by interannual change in vegetation activity.

  • PDF

Analyses and trends of forest biomass in higher Northern Latitudes

  • Tsolmon, R.;Tateishi, R.;Sambuu, B.;Tsogtbayar, Sh.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.965-967
    • /
    • 2003
  • Information on forest volume, forest coverage and biomass are important for developing global perspectives about CO$_{2}$ concentration changes. Forest biomass cannot be directly measured from space yet, but remotely sensed greenness can be used to estimate biomass on decadal and longer time scales in regions of distinct seasonality, as in the north. Hence, in this research, numerical methods were used to estimate forest biomass in higher northern regions. A regression model linking Normalized Difference Vegetation Index(NDVI), to forest biomass extracted from SPOT/4 VEGETATION data and PAL 8km data in regional and continental area (N40-N70) respectively. Statistical tests indicated that the regression model can be used to represent the changes of forest biomass carbon pools and sinks at high latitude regions over years 1982-2000. This study suggests that the implementation of estimation of biomass based on 8-km resolution NOAA/AVHRR PAL and SPOT-4/VEGETATION data could be detected over a range of land cover change processes of interest for global biomass change studies.

  • PDF

Suggestion of Estimating Method for Net Primary Production in the Geum River Basin Using NDVI (정규화식생지수를 이용한 금강유역의 순일차생산량 추정방법의 제안)

  • Shin, Shachul;Beak, Sungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.6
    • /
    • pp.43-51
    • /
    • 2008
  • This study is to evaluate the NPP (Net Primary Production) distribution in the Geum River basin from NOAA/AVHRR satellite imagery data. It is supposed that the natural vegetation condition and the NPP has the linear relationship. The NPP from natural vegetation increases proportional to the annual net radiation (Rn), where radiative dryness index (RDI) is a proportional constant connecting net radiation to NPP. Normalized Difference Vegetation Index (NDVI) is used for monitoring vegetation change, and iNDVI (integrated NDVI) for annual analysis. The iNDVI has a close relation to Rn and NPP, which can be used effectively for estimating NPP distribution of where the meteorological data is unavailable. The purpose of this study is to propose a simple method to get NPP in the Geum river basin.

  • PDF