• Title/Summary/Keyword: normalized coefficient

Search Result 319, Processing Time 0.033 seconds

Estimation of Shaft Resistance of Drilled Shafts Based on Hoek-Brown Criterion (Hoek-Brown 공식을 이용한 현장타설말뚝의 주면마찰력 산정)

  • 사공명;백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.209-220
    • /
    • 2003
  • Modification of general Hoek and Brown criterion is carried out to estimate the shaft resistance of drilled shaft socketed into rock mass. Since the general Hoek-Brown criterion can consider the in-situ state of the rock mass, the proposed method, estimating the unit shaft resistance of drilled shafts based on the Hoek-Brown criterion, has increased flexibility compared to other methods exclusively considering uniaxial compressive strength of intact rocks. The proposed method can form the upper and lower bounds, and most culled data (from 21 pile load tests) from the literature can be found between these two bounds. A comparison between the estimated and observed unit shaft resistances shows quite a good correlation even with crude assumptions for the input parameters. The best-fit line drawn from this analysis shows that at the lower strength of intact rocks (up to 10MPa), Horvath and Kenney's equation shows a good correlation with the measured values, and fur strong rocks Rosenberg and Journeaux's equation provides a close estimation with colleted data. The results of parametric studies for GSI and confining stress show that the normalized unit shaft resistance increases with these two factors. In addition, coefficient of the equational form of the estimation can vary with GSI and confining stresses.

Development Time and Development Model of the Green Peach Aphid, Myzus persicae (복숭아혹진딧물(Myzus persicae)의 발육과 발육모형)

  • Kim Ji-Soo;Kim Tae-Heung
    • Korean journal of applied entomology
    • /
    • v.43 no.4 s.137
    • /
    • pp.305-310
    • /
    • 2004
  • The development of Myzus persicae (Sulzer) was studied at temperatures ranging from 15 to $32.5^{\circ}C$ under $70{\pm}5\%$ RH, and a photoperiod of 16:8 (L:D). Mortality of 1st-2nd nymph was higher than that of 3rd-4th nymph at the most temperature ranges whereas at high temperature of $32.5^{\circ}C$, more 3-4nymph stage individuals died. The total developmental time ranged from 12.4 days at $15^{\circ}C$ to 4.9 days at $27.5^{\circ}C$, suggesting that higher the temperature, faster the development. However, at higher end temperature ranges of 30 and $32.5^{\circ}C$, the development took 5.0 and 6.3 days, respectively. The lower developmental threshold temperature and effective accumulative temperatures for the total immature stage were $4.9^{\circ}C$ and 116.5 day-degrees. The nonlinear shape of temperature related development was well described by the modified Sharpe and DeMichele model. When the normalized cumulative frequency distributions of developmental times for each life stage were fitted to the three-parameter Weibull function, attendance of shortened developmental times was apparent with pre-nymph, post-nymph, and total nymph stages in descending order. The coefficient of determination $r^2$ ranged between 0.87 and 0.94.

Security of Image Information using Steganography and QR Code in IoT (IoT에서 스테가노그라피와 QR 코드를 이용한 영상 정보의 보안)

  • Im, Yong-Soon;Kang, Eun-Young;Park, Jae-Pyo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.31-37
    • /
    • 2015
  • The security of the image information is very important in many areas of the IoT(Internet of Things), and study a number of ways to display the security (copyright, etc.). In this paper, information of image that is used by the IoT is converted to a DCT(Discrete Cosine Transform) and QC(Quantization Coefficient). And watermark (message) is to create a new encoded message(WMQR) through a QR Code. QC and WMQR applies LSB steganography techniques, can get the security (copyright, etc.) of image information. LSB steganographic techniques may be inserted according to a message (Watermark) to determine the location (Secret Key). The encoded image is sent to the recipient via the Internet. The reverse process can be obtained image and a QR code, a watermark (Message). A method for extracting a watermark from the security of the image information is coded using only the image and Secret Key, through the DCT and quantization process, so obtained by separating the watermark (Message) for the image. In this paper, we were able to improve the security of the method of image information, the image quality of the image by the simulations (PSNR), in turn, benefits were also normalized correlation (NC) and security.

Soil Particle Shape Analysis Using Fourier Descriptor Analysis (퓨리에 기술자 분석을 이용한 단일 흙 입자의 형상 분석)

  • Koo, Bonwhee;Kim, Taesik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.3
    • /
    • pp.21-26
    • /
    • 2016
  • Soil particle shape analysis was conducted with sands from Jumujun, Korea and Ras Al Khair, Saudi Arabia. Two hundred times enlarged digital images of the particles of those two sands were obtained with an optical microscope. The resolution of the digital images was $640{\times}320$. By conducting digital image processing, the coordinates of the soil particle boundary were extracted. After mapping those coordinates to the complex space, Fourier transformation was performed and the coefficients of each trigonometry term were computed. The coefficients reflect the shape characteristics of the sand grains and are invariant to translation. To evaluate the shape itself excluding the size of the soil particle, the coefficient was normalized by the equivalent radius of soil particle; this is called Fourier descriptor. After analyzing the Fourier descriptors, it was found that the major characteristics of Jumunjin and Ras Al Khair sands were elongation and asymmetry. Furthermore, it was found that the particle shapes reflect the self-similar, fractal nature of the textural features. The effects of resolution on soil particle shape analysis was also studied. Regarding this, it was found that the significant Fourier descriptors were not significantly affected by the image resolution investigated in this study, but the descriptors associated with textural features were affected.

Signatures Verification by Using Nonlinear Quantization Histogram Based on Polar Coordinate of Multidimensional Adjacent Pixel Intensity Difference (다차원 인접화소 간 명암차의 극좌표 기반 비선형 양자화 히스토그램에 의한 서명인식)

  • Cho, Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.375-382
    • /
    • 2016
  • In this paper, we presents a signatures verification by using the nonlinear quantization histogram of polar coordinate based on multi-dimensional adjacent pixel intensity difference. The multi-dimensional adjacent pixel intensity difference is calculated from an intensity difference between a pair of pixels in a horizontal, vertical, diagonal, and opposite diagonal directions centering around the reference pixel. The polar coordinate is converted from the rectangular coordinate by making a pair of horizontal and vertical difference, and diagonal and opposite diagonal difference, respectively. The nonlinear quantization histogram is also calculated from nonuniformly quantizing the polar coordinate value by using the Lloyd algorithm, which is the recursive method. The polar coordinate histogram of 4-directional intensity difference is applied not only for more considering the corelation between pixels but also for reducing the calculation load by decreasing the number of histogram. The nonlinear quantization is also applied not only to still more reflect an attribute of intensity variations between pixels but also to obtain the low level histogram. The proposed method has been applied to verified 90(3 persons * 30 signatures/person) images of 256*256 pixels based on a matching measures of city-block, Euclidean, ordinal value, and normalized cross-correlation coefficient. The experimental results show that the proposed method has a superior to the linear quantization histogram, and Euclidean distance is also the optimal matching measure.

The Relationships Between Valgus Collapse Knee Position and Quadriceps Activity During a Single Limb Step Down in Female Subjects (젊은 여성의 한쪽 다리 스텝다운 동작 시 슬관절 외반 정도와 대퇴사두근 근활성도 간의 상관관계)

  • Lee, Se-Hee;Moon, Young;Song, Ji-Hyun;Kim, Suhn-Yeop;Jang, Hyun-Jeong
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.18 no.2
    • /
    • pp.41-47
    • /
    • 2012
  • Background: This study was designed to investigate the correlation between electromyography (EMG) activities in the vastus medialis oblique (VMO) vs vastus lateralis (VL) activity ratio and the valgus collapse knee position while stepping down. Methods: Twenty healthy women volunteered to participate in this study. We measured the frontal-plane projections of the knee valgus angle, knee valgus distance, and hip adduction angle by using a digital camcorder. After 3 repetitions of the step down (dominant side) exercise, the findings of the static and dynamic phases were analyzed. EMG activities data of the VMO:VL activity ratio were recorded during the step down exercise and were normalized to the maximal voluntary isometric contraction (MVIC) of the quadriceps. A paired t-test was used to compare the findings of the static and dynamic phases. We analyzed the Spearman's rank order correlation coefficient between the and VMO:VL ratio. Results: Hip adduction angle, knee valgus angle, VMO activity, VL activity, VMO:VL activity ratio were statistically higher in the dynamic phase than in the static phase (p<.05). Frontal-plane projections of knee valgus angle were significantly correlated with hip adduction angle (r=.459, p<.05) and knee valgus distance (r=.505, p<.05). However, the EMG activity ratio of the VMO and the VL did not show a significant change during step down exercise with respect to hip adduction angle (p=.875), knee valgus angle (p=.618), and knee valgus distance (p=.701). Conclusion: The results from this study indicate that frontal-plane projections of knee valgus angle were associated with hip adduction angle and knee valgus distance. On the basis of these results, the knee valgus distance may be used to determine the valgus collapse knee position while stepping down.

  • PDF

Analytical study of circle tunnel Load considering Dilatancy Effect (Dilatancy 효과를 고려한 원형 터널 이완하중에 대한 해석적 연구)

  • Park, Shin-Young;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.626-633
    • /
    • 2020
  • This study examined the behavior of the ground by comparing the methods using the results of the Terzaghi formula and the ground investigation data and method considering the dilatancy effect for a circular tunnel using the finite element method. In the case of the Terzaghi formula, the tunnel load can be overestimated and cause overdesign. The method using the results of the ground investigation data cannot be applied when a reasonable coefficient of earth pressure is not determined. This is because it behaves completely differently from the actual behavior, and unexpected problems can occur. In the case of the method considering the dilatancy effect, however, both the strength enhancement effect can be considered through the dilatancy angle and relative density. Therefore, the tunnel load was calculated most reasonably using the method considering dilatancy. Finite element analysis using the geotechnical survey results showed that the tensile stress acts at the top of the tunnel when the upper soil of the tunnel is shallow. On the other hand, additional verification is necessary, such as a comparison with the field measurement results. Through additional research, if normalized, the tunnel load can be calculated reasonably at the time of tunnel design, and safe and economical design is possible.

Projection on First Flowering Date of Cherry, Peach and Pear in 21st Century Simulated by WRFv3.4 Based on RCP 4.5 and 8.5 Scenarios (WRF를 이용한 RCP 4.5와 8.5 시나리오 하의 21세기 벚, 복숭아, 배 개화일 변화 전망)

  • Hur, Jina;Ahn, Joong-Bae;Shim, Kyo-Moon
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.693-706
    • /
    • 2015
  • A shift of first fowering date (FFD) of spring blossoms (cherry, peach and pear) over the northest Asia under global warming is investiaged using dynamically downscaled daily temperature data with 12.5 km resolution. For the study, we obatained gridded daily data with Historical (1981~2010), and Representative Concentration Pathway (RCP) (2021~2100) 4.5 and 8.5 scenarios which were produced by WRFv3.4 in conjunction with HadGEM2-AO. A change on FFDs in 21st century is estimated by applying daily outputs of WRFv3.4 to DTS phonological model. Prior to projection on future climate, the performances of both WRFv3.4 and DTS models are evaluated using spatial distribution of climatology and SCR diagram (Normalized standard deviation-Pattern correlation coefficient-Root mean square difference). According to the result, WRFv3.4 and DTS models well simulated a feature of the terrain following characteristics and a general pattern of observation with a marigin of $1.4^{\circ}C$ and 5~6 days. The analysis reveals a projected advance in FFDs of cherry, peach and pear over the northeast Asia by 2100 of 15.4 days (9.4 days). 16.9 days (10.4 days) and 15.2 days (9.5 days), respectively, compared to the Historical simulation due to a increasing early spring (Februrary to April) temperature of about $4.9^{\circ}C$ ($2.9^{\circ}C$) under the RCP 8.5 (RCP 4.5) scenarios. This indicates that the current flowering of the cherry, peach and pear over analysis area in middle or end of April is expected to start blooming in early or middle of April, at the end of this century. The present study shows the dynamically downscaled daily data with high-resolution is helpeful in offering various useful information to end-users as well as in understanding regional climate change.

Study on Performance Variation According to the Arrangements of Adjacent Vertical-Axis Turbines for Tidal Current Energy Conversion (인접한 조류발전용 수직축 터빈의 배치방식에 따른 성능 변화)

  • Lee, Jeong-Ki;Hyun, Beom-Soo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.2
    • /
    • pp.151-158
    • /
    • 2016
  • Tidal farm is a multi-arrayed turbine system for utilizing tidal stream energy. For horizontal-axis turbine(HAT) system, it is recommended that each unit has to be deployed far apart in order to avoid hydrodynamic interference among turbines, as proposed by the European Marine Energy Centre(EMEC). But there is no rule for the arrangement of vertical-axis turbine(VAT) yet. Moreover it has been reported that a proper arrangement of adjacent turbines can enhance the overall efficiency even greater than an arrangement without mutual interference effect. This paper suggests the layout of VATs showing the better performances, which turned out to be quite different from HATs' arrangement. Numerical calculations were performed to investigate the performance variation in terms of the rotational direction as well as the distance between turbines. It has been shown that the best combination of rotational direction and distance between turbines can increase its performance higher about 9.2% than that of two independently operated turbines. It is likely that such improvement is due to the increased velocity between adjacent turbines. For diagonally arranged turbines, the maximum normalized mean power coefficient was obtained to be higher about 5.6% than that of two independent turbines. It is expected that the present results can be utilized for conceptual design of tidal farm to harness the tidal stream energy.

Application of an XRD-Pattern Calculation Method to Quantitative Analysis of Clay Minerals (X-선 회절도형 계산방법을 이용한 점토광물의 정량분석)

  • Ahn, Jung-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.32-41
    • /
    • 1992
  • An XRD quantitative analytical method using calculated XRD patterns was discussed in this study, Deep-seabed sediments commonly contain smectite, illite, chlorite, and kaolinite, and XRD pattern of each clay mineral of appropriate chemical composition was simulated by using an XRD pattern calculation method. Theoretical peak intensities of specific reflections of four clay minerals (the 001 reflections of smectite and illite, the 004 reflection of chlorite, and the 002 reflection of kaolinite) were measured from calculated patterns, and MIF(mineral intensity factor)value of each phase was determined from the intensities of calculated patterns. The peak intensities obtaine from experimental XRD patterns of sediments were corrected using the MIF values so that the calibrated intensity values for the specimens are linearly proportional to the weight fraction of each phase, which is normalized to 100 wt%. The MIF method can provide accurate quantitaive results without the necessity of correcting the factors by the mass absorption coefficient of each phase. This method excludes the necessity of standard specimens having compositions that are similar to those of clay minerals in the sediment samples. Therefore, quantitaive analysis using XRD calculation method can be utilized for the specimens, for which the standard specimens are very difficult or impossible to obtain. this quantitative method can provide rapid, routine analysis results for a large number of samples which occur in similar geological environments.

  • PDF