• Title/Summary/Keyword: normalized coefficient

Search Result 319, Processing Time 0.031 seconds

Exploring NDVI Gradient Varying Across Landform and Solar Intensity using GWR: a Case Study of Mt. Geumgang in North Korea (GWR을 활용한 NDVI와 지형·태양광도의 상관성 평가 : 금강산 지역을 사례로)

  • Kim, Jun Woo;Um, Jung Sup
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.73-81
    • /
    • 2013
  • Ordinary least squares (OLS) regression is the primary statistical method in previous studies for vegetation distribution patterns in relation to landform. However, this global regression lacks the ability to uncover some local-specific relationships and spatial autocorrelation in model residuals. This study employed geographically weighted regression (GWR) to examine the spatially varying relationships between NDVI (Normalized Difference Vegetation Index) patterns and changing trends of landform (elevation, slope) and solar intensity (insolation and duration of sunshine) in Mt Geum-gang of North-Korea. Results denoted that GWR was more powerful than OLS in interpreting relationships between NDVI patterns and landform/solar intensity, since GWR was characterized by higher adjusted R2, and reduced spatial autocorrelations in model residuals. Unlike OLS regression, GWR allowed the coefficients of explanatory variables to differ by locality by giving relatively more weight to NDVI patterns which are affected by local landform and solar factors. The strength of the regression relationships in the GWR increased significantly, by showing regression coefficient of higher than 70% (0.744) in the southern ridge of the experimental area. It is anticipated that this research output will serve to increase the scientific and objective vegetation monitoring in relation to landform and solar intensity by overcoming serious constraints suffered from the past non-GWR-based approach.

Retrieval of Fire Radiative Power from Himawari-8 Satellite Data Using the Mid-Infrared Radiance Method (히마와리 위성자료를 이용한 산불방사열에너지 산출)

  • Kim, Dae Sun;Lee, Yang Won
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.4
    • /
    • pp.105-113
    • /
    • 2016
  • Fire radiative power(FRP), which means the power radiated from wildfire, is used to estimate fire emissions. Currently, the geostationary satellites of East Asia do not provide official FRP products yet, whereas the American and European geostationary satellites are providing near-real-time FRP products for Europe, Africa and America. This paper describes the first retrieval of Himawari-8 FRP using the mid-infrared radiance method and shows the comparisons with MODIS FRP for Sumatra, Indonesia. Land surface emissivity, an essential parameter for mid-infrared radiance method, was calculated using NDVI(normalized difference vegetation index) and FVC(fraction of vegetation coverage) according to land cover types. Also, the sensor coefficient for Himawari-8(a = 3.11) was derived through optimization experiments. The mean absolute percentage difference was about 20%, which can be interpreted as a favourable performance similar to the validation statistics of the American and European satellites. The retrieval accuracies of Himawari FRP were rarely influenced by land cover types or solar zenith angle, but parts of the pixels showed somewhat low accuracies according to the fire size and viewing zenith angle. This study will contribute to estimation of wildfire emissions and can be a reference for the FRP retrieval of current and forthcoming geostationary satellites in East Asia.

Influence of Solution pH on Pyrene Binding to Sorption-Fractionated and Kaolinite-Bound Humic Substance

  • Hur Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.5
    • /
    • pp.61-69
    • /
    • 2005
  • Changes in pyrene binding by dissolved and kaolinite-associated humic substances (HS) due to HS adsorptive fractionation processes were examined using purified Aldrich humic acid (PAHA) at different pH (4, 7 and 9). Irrespective of solution pH, molecular weight (MW) fractionation occurred upon adsorption of PAHA onto kaolinite, resulting in the deviation of residual PAHA MW from the original MW prior to sorption. Variation in $K_{OC}$ by bulk PAHA was observed at different pH due to relative contributions of partitioning and size exclusion effects (i.e., specific interactions). For all pH conditions investigated, carbon-normalized pyrene binding coefficients for nonadsorbed, residual fractions $(K_{OC}(res))$ were different from the original dissolved PAHA $K_{OC}$ value $(K_{OC}(orig))$ prior to contact with the kaolinite suspensions. Positive correlations between pyrene $(K_{OC}(res))$ and weight-average molecular weight $(MW_W)$ for residual PAHA fractions were observed for pH 7 and 9. However, such a positive correlation was not found at pH 4 due to the absence of the dramatic fractionation observed for high pH conditions (i.e., exclusive fractionation with respect to higher MW), suggesting that actual MW distribution pattern is more important for sorption-fractionated HS than the composite MW value. For adsorbed PAHA, conformational changes of PAHA upon adsorption seem to be important for the extent of pyrene binding. At relatively high pH (7 and 9), lower extent of pyrene binding was observed for adsorbed PAHA versus nonadsorbed PAHA. The conformation effects were more pronounced at higher pH.

The Analysis of Evergreen Tree Area Using UAV-based Vegetation Index (UAV 기반 식생지수를 활용한 상록수 분포면적 분석)

  • Lee, Geun-Sang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.1
    • /
    • pp.15-26
    • /
    • 2017
  • The decrease of green space according to the urbanization has caused many environmental problems as the destruction of habitat, air pollution, heat island effect. With interest growing in natural view recently, proper management of evergreen tree which is lived even the winter season has been on the rise importantly. This study analyzed the distribution area of evergreen tree using vegetation index based on unmanned aerial vehicle (UAV). Firstly, RGB and NIR+RG camera were loaded in fixed-wing UAV and image mosaic was achieved using GCPs based on Pix4d SW. And normalized differences vegetation index (NDVI) and soil adjusted vegetation index (SAVI) was calculated by band math function from acquired ortho mosaic image. validation points were applied to evaluate accuracy of the distribution of evergreen tree for each range value and analysis showed that kappa coefficient marked the highest as 0.822 and 0.816 respectively in "NDVI > 0.5" and "SAVI > 0.7". The area of evergreen tree in "NDVI > 0.5" and "SAVI > 0.7" was $11,824m^2$ and $15,648m^2$ respectively, that was ratio of 4.8% and 6.3% compared to total area. It was judged that UAV could supply the latest and high resolution information to vegetation works as urban environment, air pollution, climate change, and heat island effect.

Dependences of Ultrasonic Parameters for Osteoporosis Diagnosis on Bone Mineral Density (골다공증 진단을 위한 초음파 변수의 골밀도에 대한 의존성)

  • Hwang, Kyo Seung;Kim, Yoon Mi;Park, Jong Chan;Choi, Min Joo;Lee, Kang Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.5
    • /
    • pp.502-508
    • /
    • 2012
  • Quantitative ultrasound technologies for osteoporosis diagnosis measure ultrasonic parameters such as speed of sound(SOS) and normalized broadband ultrasound attenuation(nBUA) in the calcaneus (heel bone). In the present study, the dependences of SOS and nBUA on bone mineral density in the proximal femur with high risk of fracture were investigated by using 20 trabecular bone samples extracted from bovine femurs. SOS and nBUA in the femoral trabecular bone samples were measured by using a transverse transmission method with one matched pair of ultrasonic transducers with a center frequency of 1.0 MHz. SOS and nBUA measured in the 20 trabecular bone samples exhibited high Pearson's correlation coefficients (r) of r = 0.83 and 0.72 with apparent bone density, respectively. The multiple regression analysis with SOS and nBUA as independent variables and apparent bone density as a dependent variable showed that the correlation coefficient r = 0.85 of the multiple linear regression model was higher than those of the simple linear regression model with either parameter SOS or nBUA as an independent variable. These high linear correlations between the ultrasonic parameters and the bone density suggest that the ultrasonic parameters measured in the femur can be useful for predicting the femoral bone mineral density.

A study of artificial neural network for in-situ air temperature mapping using satellite data in urban area (위성 정보를 활용한 도심 지역 기온자료 지도화를 위한 인공신경망 적용 연구)

  • Jeon, Hyunho;Jeong, Jaehwan;Cho, Seongkeun;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.11
    • /
    • pp.855-863
    • /
    • 2022
  • In this study, the Artificial Neural Network (ANN) was used to mapping air temperature in Seoul. MODerate resolution Imaging Spectroradiomter (MODIS) data was used as auxiliary data for mapping. For the ANN network topology optimizing, scatterplots and statistical analysis were conducted, and input-data was classified and combined that highly correlated data which surface temperature, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), time (satellite observation time, Day of year), location (latitude, hardness), and data quality (cloudness). When machine learning was conducted only with data with a high correlation with air temperature, the average values of correlation coefficient (r) and Root Mean Squared Error (RMSE) were 0.967 and 2.708℃. In addition, the performance improved as other data were added, and when all data were utilized the average values of r and RMSE were 0.9840 and 1.883℃, which showed the best performance. In the Seoul air temperature map by the ANN model, the air temperature was appropriately calculated for each pixels topographic characteristics, and it will be possible to analyze the air temperature distribution in city-level and national-level by expanding research areas and diversifying satellite data.

Comparison of MODIS and VIIRS NDVI Characteristics on Corn and Soybean Cultivation Areas in Illinois (일리노이주 옥수수, 콩 재배지 MODIS와 VIIRS NDVI 특성 비교)

  • Kyungdo Lee;Sookgyeong Kim;Jae-Hyun Ryu;Hoyong Ahn
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1483-1490
    • /
    • 2023
  • We analyzed the potential for joint utilization of Visible Infrared Imaging Radiometer Suite (VIIRS) satellite imagery Normalized Difference Vegetation Index (NDVI) in crop assessment, considering the aging of MODerate resolution Imaging Spectroradiometer (MODIS) satellites. Over 11 years from 2012 to 2022, we examined the characteristics of NDVI changes in corn and soybean cultivation areas in Illinois, USA. VIIRS and MODIS satellite imagery NDVI exhibited a high correlation coefficient of over 0.98. However, during periods of rapid crop growth or decline, VIIRS NDVI showed values approximately 0.12 to 0.14 higher than MODIS. Estimating crop anomaly classes based on NDVI, we observed similar trends in corn and soybean crop anomaly classes in 2018 and 2019. However, in 2022, there appeared to be a significant divergence in crop anomaly classes, suggesting the need for further investigation. The correlation coefficients between MODIS and VIIRS satellite imagery NDVI and corn and soybean yields were consistently high, exceeding 0.8, indicating the potential for quantity estimation using both MODIS and VIIRS satellite imagery. Specifically, for VIIRS NDVI, excluding the increasing trend in crop quantity estimation for soybeans enhanced the correlation, and compared to MODIS, it showed a consistently high correlation with quantity from approximately 16 days earlier, indicating the potential for early estimation.

Relationship between Abnormal Hyperintensity on T2-Weighted Images Around Developmental Venous Anomalies and Magnetic Susceptibility of Their Collecting Veins: In-Vivo Quantitative Susceptibility Mapping Study

  • Yangsean Choi;Jinhee Jang;Yoonho Nam;Na-Young Shin;Hyun Seok Choi;So-Lyung Jung;Kook-Jin Ahn;Bum-soo Kim
    • Korean Journal of Radiology
    • /
    • v.20 no.4
    • /
    • pp.662-670
    • /
    • 2019
  • Objective: A developmental venous anomaly (DVA) is a vascular malformation of ambiguous clinical significance. We aimed to quantify the susceptibility of draining veins (χvein) in DVA and determine its significance with respect to oxygen metabolism using quantitative susceptibility mapping (QSM). Materials and Methods: Brain magnetic resonance imaging of 27 consecutive patients with incidentally detected DVAs were retrospectively reviewed. Based on the presence of abnormal hyperintensity on T2-weighted images (T2WI) in the brain parenchyma adjacent to DVA, the patients were grouped into edema (E+, n = 9) and non-edema (E-, n = 18) groups. A 3T MR scanner was used to obtain fully flow-compensated gradient echo images for susceptibility-weighted imaging with source images used for QSM processing. The χvein was measured semi-automatically using QSM. The normalized χvein was also estimated. Clinical and MR measurements were compared between the E+ and E- groups using Student's t-test or Mann-Whitney U test. Correlations between the χvein and area of hyperintensity on T2WI and between χvein and diameter of the collecting veins were assessed. The correlation coefficient was also calculated using normalized veins. Results: The DVAs of the E+ group had significantly higher χvein (196.5 ± 27.9 vs. 167.7 ± 33.6, p = 0.036) and larger diameter of the draining veins (p = 0.006), and patients were older (p = 0.006) than those in the E- group. The χvein was also linearly correlated with the hyperintense area on T2WI (r = 0.633, 95% confidence interval 0.333-0.817, p < 0.001). Conclusion: DVAs with abnormal hyperintensity on T2WI have higher susceptibility values for draining veins, indicating an increased oxygen extraction fraction that might be associated with venous congestion.

Quantitative Thoracic Magnetic Resonance Criteria for the Differentiation of Cysts from Solid Masses in the Anterior Mediastinum

  • Eui Jin Hwang;MunYoung Paek;Soon Ho Yoon;Jihang Kim;Ho Yun Lee;Jin Mo Goo;Hyungjin Kim;Heekyung Kim;Jeanne B. Ackman
    • Korean Journal of Radiology
    • /
    • v.20 no.5
    • /
    • pp.854-861
    • /
    • 2019
  • Objective: To evaluate quantitative magnetic resonance imaging (MRI) parameters for differentiation of cysts from and solid masses in the anterior mediastinum. Materials and Methods: The development dataset included 18 patients from two institutions with pathologically-proven cysts (n = 6) and solid masses (n = 12) in the anterior mediastinum. We measured the maximum diameter, normalized T1 and T2 signal intensity (nT1 and nT2), normalized apparent diffusion coefficient (nADC), and relative enhancement ratio (RER) of each lesion. RERs were obtained by non-rigid registration and subtraction of precontrast and postcontrast T1-weighted images. Differentiation criteria between cysts and solid masses were identified based on receiver operating characteristics analysis. For validation, two separate datasets were utilized: 15 patients with 8 cysts and 7 solid masses from another institution (validation dataset 1); and 11 patients with clinically diagnosed cysts stable for more than two years (validation dataset 2). Sensitivity and specificity were calculated from the validation datasets. Results: nT2, nADC, and RER significantly differed between cysts and solid masses (p = 0.032, 0.013, and < 0.001, respectively). The following criteria differentiated cysts from solid masses: RER < 26.1%; nADC > 0.63; nT2 > 0.39. In validation dataset 1, the sensitivity of the RER, nADC, and nT2 criteria was 87.5%, 100%, and 75.0%, and the specificity was 100%, 40.0%, and 57.4%, respectively. In validation dataset 2, the sensitivity of the RER, nADC, and nT2 criteria was 90.9%, 90.9%, and 72.7%, respectively. Conclusion: Quantitative MRI criteria using nT2, nADC, and particularly RER can assist differentiation of cysts from solid masses in the anterior mediastinum.

3D Content Model Hashing Based on Object Feature Vector (객체별 특징 벡터 기반 3D 콘텐츠 모델 해싱)

  • Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.6
    • /
    • pp.75-85
    • /
    • 2010
  • This paper presents a robust 3D model hashing based on object feature vector for 3D content authentication. The proposed 3D model hashing selects the feature objects with highest area in a 3D model with various objects and groups the distances of the normalized vertices in the feature objects. Then we permute groups in each objects by using a permutation key and generate the final binary hash through the binary process with the group coefficients and a random key. Therefore, the hash robustness can be improved by the group coefficient from the distance distribution of vertices in each object group and th hash uniqueness can be improved by the binary process with a permutation key and a random key. From experimental results, we verified that the proposed hashing has both the robustness against various mesh and geometric editing and the uniqueness.