• Title/Summary/Keyword: normal-weight obesity

Search Result 941, Processing Time 0.019 seconds

Anti-diabetic effects of Allium tuberosum rottler extracts and lactic acid bacteria fermented extracts in type 2 diabetic mice model (제2형 당뇨질환모델 db/db 마우스에서 부추 추출물 및 유산균 발효물의 항당뇨 효과)

  • Kim, Bae Jin;Jo, Seung Kyeung;Jeong, Yoo Seok;Jung, Hee Kyoung
    • Food Science and Preservation
    • /
    • v.22 no.1
    • /
    • pp.134-144
    • /
    • 2015
  • The anti-diabetic effects of Allium tuberosum Rottler extracts (ATE) and ATE fermented with lactic acid bacteria in db/db mice were evaluated. The electron donating activity of ATE fermented with Lactobacillus plantarum, and Lactobacillus casei, respectively, increased compared to that of ATE, but the superoxide radical scavenging activity of the ATE incubated with L. plantarum decreased. The superoxide radical scavenging activity of the ATE fermented with both L. plantarum and L. casei was similar to that of the ATE. Therefore, fermented ATE (FATE) was prepared for in vivo testing by incubating it with both L. plantarum and L. casei. The db/db mice were divided into six groups: normal (non-diabetic mice), diabetic control (DM), and four experimental groups administered 200 or 400 mg/kg/day ATE (ATE200 and ATE400) and 200 or 400 mg/kg/day FATE (FATE200 and FATE400). Weight gain was significantly inhibited in the FATE200 group compared with that in the other db/db mice groups (p<0.05). The areas under the curve of the ATE400 and FATE400 groups were significantly smaller than that of the DM group in the glucose tolerance evaluation. The serum glucagon-like peptide-1 levels in the ATE400 and FATE400 groups increased. These results indicate that administering ATE and FATE may be effective against anti-hyperglycemia by regulating insulin resistance. In particular, FATE may be beneficial for controlling obesity in type 2 diabetes.