• Title/Summary/Keyword: normal operator

Search Result 282, Processing Time 0.019 seconds

Orofacial Thermal Quantitative Sensory Testing (QST): A Study of Healthy Korean Women and Sex Difference

  • Ahn, Sung-Woo;Kim, Ki-Suk
    • Journal of Oral Medicine and Pain
    • /
    • v.40 no.3
    • /
    • pp.96-101
    • /
    • 2015
  • Purpose: Thermal sensory test as an essential part of quantitative sensory testing (QST) has been recognized as a useful tool in the evaluation of the trigeminal nerve function. Normative data in the orofacial region have been reported but the data on differences in the test site, sex and ethnicity are still insufficient. Thus, this study aimed to investigate the normal range of orofacial thermal QST data in the healthy Korean women, and assess sex difference of thermal perception in the orofacial regions. Methods: Thermal QST was conducted on 20 healthy women participants (mean age, 26.4 years; range, 21 to 34 years). The thermal thresholds (cold detection threshold, CDT; warm detection threshold, WDT; cold pain threshold, CPT; and heat pain threshold, HPT) were measured bilaterally at the 5 trigeminal sites (the forehead, cheek, mentum, lower lip and tongue tip). The normative thermal thresholds of women in the orofacial region were evaluated using one-way ANOVA and compared with the previously reported data from age- and site-matched 30 healthy men (mean age, 26.1 years; range, 23 to 32 years) using two-way ANOVA. One experienced operator performed the tests of both sexes and all tests were done in the same condition except the time variability. Results: Women showed significant site differences for the CDT (p<0.001), WDT (p<0.001), and HPT (p=0.047) in the orofacial region. The CDT (p<0.001) and the CPT (p=0.007) presented significant sex difference unlike the WDT and the HPT. Conclusions: The thermal sensory evaluation in the orofacial region should be considered in the context of site and sex and the normative data in this study could be useful for assessment of the sensory abnormalities in the clinical setting.

A Reliability Analysis of HHSIS of KNU 5,6,7 and 8 Following the Removal of s-signal from Charging/safety Injection Pump Mini-flow Line Valves (충전/안전주입 펌프 순환배관의 안전주입신호 제거에 따른 원자력 5,6,7,8 호기의 고압안전주입계통의 신뢰도 분석)

  • Chung, Dae-Wook;Chung, Chang-Hyun;Kang, Chang-Soon
    • Nuclear Engineering and Technology
    • /
    • v.20 no.1
    • /
    • pp.47-53
    • /
    • 1988
  • The objective of this study is to evaluate the reliability of the High Head Safety Injection System (HHIS) of KNU 5, 6, 7 and 8 following the removal of safety injection signal (s-signal) from the mini-flow bypass line valves of charging/safety injection pumps. The unavailability of HHSIS and the rupture probability of a charging/safety injection pump have been computed for two different cases; with s-signal on and removed. The results show that when the s-signal is removed from the mini-flow bypass line valves, the unavailability of HHSIS slightly increases while the rupture probability of a charging/safety injection pump is significantly reduced. Hence, based upon the results of this study we conclude that it is more reasonable to remove the s-signal from the mini-flow bypass line valves of KNU 5, 6, 7 and 8 in the normal plant operation. And to improve the availability of HHSIS, the modification of operational procedures and the emphasis on operator training are recommended.

  • PDF

A Study on the Real-time Optimization Technique for a Train Velocity Profile (실시간 열차 속도 프로파일 최적화 기법에 관한 연구)

  • Kim, Moosun;Kim, Jungtai;Park, Chul-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.344-351
    • /
    • 2016
  • In the point of view of a train operator, the main concern with a train operation is not only to maintain a time schedule, but also to decrease the energy consumption as much as possible. Generally for a manual drive, a train conductor controls the train acceleration and deceleration by controlling the notches not to exceed the regulation velocity by considering the given maximum velocity profile for an operation route. For this case, the guideline for a conductor is needed to choose the proper notches by applying the notch optimization so as to drive at the regulation velocity and minimize energy consumption simultaneously. In this paper, the real-time notch optimization plan is suggested using a genetic algorithm that optimizes the notches for the remaining route in real time when the event occurs that track information or regulation velocity profile of the remaining route changes during train operation as well as a normal operation situation. An energy saving effect and the convergence behavior of the optimal solution obtained was analyzed in a genetic algorithm.

Shape memory alloy (SMA)-based head and neck immobilizer for radiotherapy

  • Lee, Hyun-Taek;Kim, Sung-In;Park, Jong Min;Kim, Ho-Jin;Song, Dae-Seob;Kim, Hyung-Il;Wu, Hong-Gyun;Ahn, Sung-Hoon
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.176-182
    • /
    • 2015
  • Head-and-neck cancer is often treated with intensive irradiation focused on the tumor, while delivering the minimum amount of irradiation to normal cells. Since a course of radiotherapy can take 5-6 weeks or more, the repeatability of the patient posture and the fastening method during treatment are important determinants of the success of radiotherapy. Many devices have been developed to minimize positional discrepancies, but all of the commercial devices used in clinical practice are operated manually and require customized fixtures for each patient. This is inefficient and the performance of the fixture device depends on the operator's skill. Therefore, this study developed an automated head-and-neck immobilizer that can be used during radiotherapy and evaluated the positioning reproducibility in a phantom experiment. To eliminate interference caused by the magnetic field from computed tomography hardware, Ni-Ti shape-memory alloy wires were used as the actuating elements of the fixtures. The resulting positional discrepancy was less than 5 mm for all positions, which is acceptable for radiotherapy.

Calculation of Wave Resistance of a Hybrid Hydrofoil (복합지지형 고속선의 조파저항 계산)

  • Yoo, J.H.;Kim, Y.G.;Lew, J.M.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.1-8
    • /
    • 1996
  • A potential-based panel method has been developed for numerical computation of wave resistance on a hybrid hydrofoil. Hybrid hydrofoil is composed of a main body, two struts and two hydrofoils. The main body, which is assumed to be an axisymmetric body for the present analysis, is normally used to support displacement of a body with its buoyancy. Normal dipoles and the sources are distributed on the body(main body, struts, hydrofoils) and the sources are distributed on the free surface. Linearized free surface and the radiation conditions are satisfied using the fourth order finite difference operator and the semi-linear pressure Kutta condition is used for the numerical computation of the hydrofoils. Poisson type free surface condition has been used for the numerical computation and hyperboloidal panel method has been used for better numerical accuracy. To verify this numeric method, model tests are performed in circulation water channel. From the comparison of experimental results with numeric ones, the present method can be used as a useful tool for the design of high speed vessels.

  • PDF

A Comparison of the Effects of Concomitant Analgesics with Midazolam for Sedative Dental Therapy

  • Kim, Ju-Won;Lee, Chang-Youn;Oh, Seung-Min;Kim, Jwa-Young;Yang, Byoung-Eun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.6
    • /
    • pp.449-454
    • /
    • 2012
  • Purpose: Intravenous sedation with midazolam is common in contemporary dentistry. That is effective for anxious patients, but additional analgesic agent needs to be used, because midazolam alone doesn't have an analgesic effect. This study was performed to select an analgesic agent between an opioid agent, and nonsteroidal anti-inflammatory drugs as adjunctives in intravenous sedation with midazolam. Methods: The subjects were 60 patients who visited the Department of Oral and Maxillofacial Surgery, Sacred Heart Hospital, Hallym University, between August 2009 and February 2010. Conscious sedation was performed on 20 patients of 3 groups (control group, ketorolac group, and fentanyl group), who were divided randomly. The analgesic agent was administrated preoperatively. For sedation, vital signs were recorded. After sedation and operation, subjective questionnaires of the patient and operator were implemented. Results: All of the $SPO_2$, blood pressure, and heart rates stayed within the normal range for sedation. The sedation depth and analgesic effect of the ketorolac group and fentanyl group were similar. In the case of sedation depth, 12 patients in the ketorolac group and 14 patients in the fentanyl group had no memory of surgery. In the case of analgesic effect, the visual analogue scale of pain scored 2~3 in 13 patients in the ketorolac group, and 0~2 in 12 patients in the fentanyl group. The satisfaction of patients and doctors was also similar. Conclusion: Considering the management and complication of an opioid agent, non-steroidal anti-inflammatory drugs is more effective than an opioid agent.

Optimized Trim and Heeling Adjustment by Using Heuristic Algorithm (휴리스틱 알고리즘을 이용한 트림 및 힐링 각도 조절 최적화)

  • HONG CHUNG You;LEE JIN UK;PARK JE WOONG
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.62-67
    • /
    • 2004
  • Many ships in voyage experience weight and buoyancy distribution change by various reasons such as change of sea water density and waves, weather condition, and consumption of fuel, provisions, etc . The weight and buoyancy distribution change can bring the ships out of allowable trim, heeling angle. In these case, the ships should adjust trim and heeling angle by shifting of liquid cargo or ballasting, deballasting of ballast tanks for recovery of initial state or for a stable voyage. But, if the adjustment is performed incorrectly, ship's safety such as longitudinal strength, intact stability, propeller immersion, wide visibility, minimum forward draft cannot be secured correctly. So it is required that the adjustment of trim and heeling angle should be planned not by human operators but by optimization computer algorithm. To make an optimized plan to adjust trim and heeling angle guaranteeing the ship's safety and quickness of process, Uk! combined mechanical analysis and optimization algorithm. The candidate algorithms for the study were heuristic algorithm, meta-heuristic algorithm and uninformed searching algorithm. These are widely used in various kinds of optimization problems. Among them, heuristic algorithm $A^\ast$ was chosen for its optimality. The $A^\ast$ algorithm is then applied for the study. Three core elements of $A^\ast$ Algorithm consists of node, operator, evaluation function were modified and redefined. And we analyzed the $A^\ast$ algorithm by considering cooperation with loading instrument installed in most ships. Finally, the algorithm has been applied to tanker ship's various conditions such as Normal Ballast Condition, Homo Design Condition, Alternate Loading Condition, Also the test results are compared and discussed to confirm the efficiency and the usefulness of the methodology developed the system.

  • PDF

ICCP Control and Monitoring System for Ships

  • Oh, Jin-Seok;Moon, Serng-Bae
    • Journal of Navigation and Port Research
    • /
    • v.30 no.4
    • /
    • pp.291-294
    • /
    • 2006
  • Corrosion is never avoided in the use rf materials with various environments. The underwater hull is normally protected against rusting by several coatings of anti-corrosive paint. The purpose of ICCP(Impressed Current Cathodic Protection) system is to eliminate the rusting or corrosion, which occurs on metal immersed in seawater. This thesis is about the ICCP control and monitoring system, which brings protection against the corrosion of the ship's hull in the sea environments. The test system for ICCP is composed of a power supply, anode, reference electrode and controller. The test system is composed power supply, anode, ref electrode, shunt and etc. The protection current is sent to the protection area though anode. Reference electrode senses whether or not the detected potential is within a range of protection of test equipment and then it is automatically controlled to increase or decrease the amount of protective current to be sent to the anode by controller. The monitoring system with LabView is also detected in order to check the normal state of the system at operation period, because an operator does not always watch over this system and thus the system cannot operate well because rf his or her negligent management. This paper was studied the variation of potential and current density with environment factors, velocity and time, and the experimental results will be explained Also, It is suggested that this system can accommodate a ship's automation for SCMS(Ship Control and Management System) and will be very useful.

The development of full-scope replica simulator for variable supercritical pressure once-through fossil power plants (변압 관류형 초임계압 화력발전소 전범위 시뮬레이터 개발)

  • Lee, Jung-Kun;Ahn, Yeon-Shik;Jung, Hoon;Lee, Yong-Kwan;Han, Byoung-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.392-399
    • /
    • 1998
  • A full-scope replica type simulator whose MCR(main control room) has the same features and operation functions as MCR of the reference power plant has been developed for a fossil power plant. This simulator was developed with the model of Poryung Fossil Power Plant #3,4 which is the standard model of the Korean fossil power plant. It is the first localized simulator for the supercritical, variable boiler pressure type fossil power plant. The simulator provides various kinds of accidents which are in normal plant operation and thus enables operators to recover or reduce possible damages. To design and develop this kind of simulator, we need to integrate high technologies such as system analysis, plant operation and system integration of mechanics, physics, computer science. CASE(Computer Aided Software Engineering) tools were used to develop the dynamic model. This simulator will greatly contribute to the improvement of the safety and efficiency of the fossil power plant by implementing operator training. In this paper, the outline of software and hardware configuration and characteristics of the simulator are described, and the results of 30%, 50%, 75%, 100% load operation test will be discussed.

  • PDF

Implementation of Image-based Virtual Fence for Surveillance Area Setup (감시영역 설정을 위한 영상 기반 가상펜스 구현)

  • Kim, Jae-jun;Kim, Do-yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.9
    • /
    • pp.2145-2152
    • /
    • 2015
  • The existing CCTV has limitation such as problem on usage of the off-line type of recorded image for specific investigation, and requirement on interactive operator intervention for real-time surveillance. Therefore, it is required to develop the intelligent CCTV equipped with various functionalities in order to overcome drawbacks mentioned above. In this paper, implementation methods of image-based virtual fence were proposed by using the spline curves with supplied control for setup of surveillance area. In addition, pre-alarm region within the predefined distance was established with tangent and normal lines extracted from control points. The image-based virtual fence can be used for remote detection of intrusion and provision of real-time intrusion alarm, and can be expected to use in safety-related application areas including security and crime prevention.