• Title/Summary/Keyword: normal mode expansion

Search Result 18, Processing Time 0.039 seconds

Guided wave field calculation in anisotropic layered structures using normal mode expansion method

  • Li, Lingfang;Mei, Hanfei;Haider, Mohammad Faisal;Rizos, Dimitris;Xia, Yong;Giurgiutiu, Victor
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.157-174
    • /
    • 2020
  • The guided wave technique is commonly used in structural health monitoring as the guided waves can propagate far in the structures without much energy loss. The guided waves are conventionally generated by the surface-mounted piezoelectric wafer active sensor (PWAS). However, there is still lack of understanding of the wave propagation in layered structures, especially in structures made of anisotropic materials such as carbon fiber reinforced polymer (CFRP) composites. In this paper, the Rayleigh-Lamb wave strain tuning curves in a PWAS-mounted unidirectional CFRP plate are analytically derived using the normal mode expansion (NME) method. The excitation frequency spectrum is then multiplied by the tuning curves to calculate the frequency response spectrum. The corresponding time domain responses are obtained through the inverse Fourier transform. The theoretical calculations are validated through finite element analysis and an experimental study. The PWAS responses under the free, debonded and bonded CFRP conditions are investigated and compared. The results demonstrate that the amplitude and travelling time of wave packet can be used to evaluate the CFRP bonding conditions. The method can work on a baseline-free manner.

Effect of Curing Conditions on the ASR of Lightweight Aggregate Concrete (양생조건이 경량골재 콘크리트의 ASR에 미치는 영향)

  • 성찬용;김성완;민정기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.4
    • /
    • pp.38-46
    • /
    • 1993
  • This study is to analyze effect of exposure environment and mode of ASR on the engineering properties of synthetic lightweight aggregate concrete, such as dynamic modulus of elasticity and ultrasonic pulse velocity. The results of this study are summarized as foflows ; 1. The expansion rate of each exposure environment in 380$^{\circ}$C and NaCI 4% solution was shown higher than in 20$^{\circ}$C and normal water. The expansion rate of each exposure mode was largely shown in order of fjill immersion, wetting/drying, half immersion. 2. The dynamic modulus of elasticty and ultrasonic pulse velocity of each exposure environment in 38$^{\circ}$C and NaCl 4% solution was shown less than in 20$^{\circ}$C and normal water. The dynamic modulus of elasticity and ultrasonic pulse velocity of each exposure mode was shown smaller in order of full immersion, wetting/drying, half imersion.3. The relation between dynamic modulus of elasticity and ultrasonic pulse velocity was highly significant. The dynamic modulus of elasticity was increased with increase of ultrasonic pulse velocity. The decreasing rate of the dynamic modulus of elasticity was shown 2.1~3.4 times higher than the ultrasonic pulse velocity at each age, exposure environment and mode, respectively. 4. The expansion of each exposure environment and mode was increased with increase of curing age. The dynamic modulus of elasticity and ultrasonic pulse velocity of those concrete was increased with increase of curing age. At the curing age 28 days, the highest properties was showed at each type concrete, it was gradually decreased with increase of curing age. Specially, at the curing age 98 days of full immersion, the rate of expansion of type D was shown 3.95 times higher than the type A. But the dynamic modulus of elasticity and ultrasonic pulse velocity was decreased 17% and 8.3%.

  • PDF

Analysis of the Propagation Characteristics of Ultrasonic Guided Waves Excited by Single Frequency and Broadband Sources

  • Kang, To;Song, Sung-Jin;Kim, Hak-Joon;Cho, Young-Do;Lee, Dong-Hoon;Cho, Hyun-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.6
    • /
    • pp.570-578
    • /
    • 2009
  • Excitation and propagation of guided waves are very complex problems in pipes due to their dispersive nature. Pipes are commonly used in the oil, chemical or nuclear industry and hence must be inspected regularly to ensure continued safe operation. The normal mode expansion(NME) method is given for the amplitude with which any propagating waveguide mode is generated in the pipes by applied surface tractions. Numerical results are calculated based on the NME method using different sources, i.e., non-axisymmetric partial loading and quasi-axisymmetric loading sources. The sum of amplitude coefficients for 0~nineth order of the harmonic modes are calculated based on the NME method and the dispersion curves in pipes. The superimposed total field which is namely the angular profile, varies with propagating distance and circumferential angle. This angular profile of guided waves provides information for setting the transducer position to find defects in pipes.

Analysis of Inclined Crack Extension in Orthotropic Solids Under Biaxial Loading (2축하중을 받는 직교이방성체내 경사균열진전의 해석)

  • Lim, Won-Kyun;Choi, Seung-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.993-1000
    • /
    • 2002
  • The objective of this work is to develop the capability to analyze accurately the mixed-mode propagation of a crack in composite structures with elastic orthotropic material stiffness properties and anisotropic material strength characteristics. In order to develop the capability to fully analyze fracture growth and failure in anisotropic structures, we examined the fundamental problem of mixed mode fracture by carrying out the analysis on orthotropic materials with an inclined crack subject to biaxial loading. Our goal here is to include an additional term in the asymptotic expansion of the crack tip stress field and to show that the direction of crack initiation can be significantly affected by that term. We employ the normal stress ratio theory to predict the direction of crack extension. It is shown that the angle of crack extension can be altered by horizontal loads and the use of second order term in the series expansion is important f3r the accurate determination of crack growth direction.

The Theoretical Investigation of Phased Array Guided Waves (위상배열 유도초음파 검사의 이론적 고찰)

  • Lee, Jae-Sun;Cho, Youn-Ho;Achenbach, Jan D.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.4
    • /
    • pp.367-373
    • /
    • 2011
  • Guided waves inspection techniques that are different with inspection technique by bulk waves are widely used in pipe line evaluation due to advantages of long distance inspection. However, most of pipe lines at industrial fields are buried and/or coated. In this case, due to the attenuation effect from soil and/or coating material, there are a lot of difficulty on inspection by conventional ultrasonic technique. In this paper, guided waves propagating patterns are calculated with respect to excitation mode by Normal Mode Expansion(NME). Guided waves patterns based on excited by single transducer and guided wave focusing technique have employed to analyze focusing pattern on a pipe. A longitudinal mode and high order flexural modes are used with various number of transducers to determine sensitivity. Guided waves energy excited by multi transducer with focusing algorithm was successfully focused at a desired point.

Improvement on dynamic characteristics of hydroformed Engine Cradle with FEA (하이드로포밍 엔진 서브프레임의 동특성 개선)

  • Jin, K.S.;Kim, H.S.;Kim, Y.G.;Na, S.M.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.397-402
    • /
    • 2007
  • Application of hydroforming technology for Engine Cradle has done much to reduce the weight of it. In most cases, hydroformed member of Engine Cradle is made in one-piece. And this method cause a limeted design that amount of expansion at the center portion of the member is not enough to meet the required performance. This limited design leads to decrease the dynamic characteristics of Engine Cradle. In this paper, comparative analyses of conventional stamped engine cradle and hydroformed cradle of one-piece were conducted using Normal Mode analysis and FRF(Frequancy Response Function)analysis. Finally, to improve the disadvantage mentioned above, hydroformed member of 3-pieces was proposed.

  • PDF

Update the finite element model of Canton Tower based on direct matrix updating with incomplete modal data

  • Lei, Y.;Wang, H.F.;Shen, W.A.
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.471-483
    • /
    • 2012
  • In this paper, the structural health monitoring (SHM) benchmark problem of the Canton tower is studied. Based on the field monitoring data from the 20 accelerometers deployed on the tower, some modal frequencies and mode shapes at measured degrees of freedom of the tower are identified. Then, these identified incomplete modal data are used to update the reduced finite element (FE) model of the tower by a novel algorithm. The proposed algorithm avoids the problem of subjective selection of updated parameters and directly updates model stiffness matrix without model reduction or modal expansion approach. Only the eigenvalues and eigenvectors of the normal finite element models corresponding to the measured modes are needed in the computation procedures. The updated model not only possesses the measured modal frequencies and mode shapes but also preserves the modal frequencies and modes shapes in their normal values for the unobserved modes. Updating results including the natural frequencies and mode shapes are compared with the experimental ones to evaluate the proposed algorithm. Also, dynamic responses estimated from the updated FE model using remote senor locations are compared with the measurement ones to validate the convergence of the updated model.

High Dispersion Spectra of the Young Planetary Nebula NGC 7027

  • Hyung, Siek;Lee, Seong-Jae;Bok, Jang-Hee
    • Journal of the Korean earth science society
    • /
    • v.36 no.5
    • /
    • pp.419-426
    • /
    • 2015
  • We investigated the high dispersion spectra that had been secured at the center of the planetary nebula NGC 7027 with the Bohyunsan Optical Echelle Spectrograph (BOES) on October, 20, 2009. We analyzed the forbidden lines of [OI], [SII], [OII], [NII], [ClIII], [ArIII], [OIII], [ArIV], [NeIII], [ArV], and [CaV] in the $3770-9225{\AA}$ wavelength region. The expansion velocities were derived from double Gaussian line profiles of the emission lines, after eliminating the subsidiary line broadening effects. The radial variations of the expansion velocities were obtained by projecting the derived expansion velocities: $19.56-31.93kms^{-1}$ onto the equatorial shell elements of the inner and the outer boundaries of the main shell of 2.5(2.1)" and 3.8(3.6)", according to the ionization potential of each ion. Analysis of equatorial shell spectra indicated that the equatorial shell generally expands in an accelerated velocity mode, but the expansion pattern deviates from a linear velocity growth with radial distance. NGC 7027, of which age is about 1000 years or less, might be still at its early stage. During the first few hundred years, plausibly in its early stage, the main shell of PN expands very slowly and, later, it gradually gain its normal expansion speed.

Approaches of the Computaional Mechanics on the Stress Wave Analysis (응력파동해석에 대한 전산역학적 접근방법)

  • 조윤호;정현규;김승호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.415-429
    • /
    • 2002
  • Various modeling techniques for ultrasonic wave propagation and scattering problems in finite solid media are presented. Elastodynamic boundary value problems in inhomogeneous multi-layered plate-like structures are set up for modal analysis of guided wave propagation and numerically solved to obtain dispersion curves which show propagation characteristics of guided waves. As a powerful modeling tool to overcome such numerical difficulties in wave scattering problems as the geometrical complexity and mode conversion, the Boundary Element Method(BEM) is introduced and is combined with the normal mode expansion technique to develop the hybrid BEM, an efficient technique for modeling multi-mode conversion of guided wave scattering problems.

  • PDF

Analysis of Orthotropic Materials with Crack (균열을 내포하는 직방성재료의 해석)

  • 임원균
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2001.05a
    • /
    • pp.179-184
    • /
    • 2001
  • The objective of this work is to develop the capability to analyze accurately the mixed-mode propagation of a crack in composite structures with elastic orthotropic material stiffness properties and anisotropic material strength characteristics. We employ the normal stress ratio theory to predict the direction of crack extension. It is shown that the angle of crack extension can be altered by the use of second order term in the series expansion is important for the accurate determination of crack growth direction.

  • PDF