• Title/Summary/Keyword: normal inverse gaussian

Search Result 17, Processing Time 0.02 seconds

Comparison of parameter estimation methods for normal inverse Gaussian distribution

  • Yoon, Jeongyoen;Kim, Jiyeon;Song, Seongjoo
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.1
    • /
    • pp.97-108
    • /
    • 2020
  • This paper compares several methods for estimating parameters of normal inverse Gaussian distribution. Ordinary maximum likelihood estimation and the method of moment estimation often do not work properly due to restrictions on parameters. We examine the performance of adjusted estimation methods along with the ordinary maximum likelihood estimation and the method of moment estimation by simulation and real data application. We also see the effect of the initial value in estimation methods. The simulation results show that the ordinary maximum likelihood estimator is significantly affected by the initial value; in addition, the adjusted estimators have smaller root mean square error than ordinary estimators as well as less impact on the initial value. With real datasets, we obtain similar results to what we see in simulation studies. Based on the results of simulation and real data application, we suggest using adjusted maximum likelihood estimates with adjusted method of moment estimates as initial values to estimate the parameters of normal inverse Gaussian distribution.

A numerical study of adjusted parameter estimation in normal inverse Gaussian distribution (Normal inverse Gaussian 분포에서 모수추정의 보정 방법 연구)

  • Yoon, Jeongyoen;Song, Seongjoo
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.4
    • /
    • pp.741-752
    • /
    • 2016
  • Numerous studies have shown that normal inverse Gaussian (NIG) distribution adequately fits the empirical return distribution of financial securities. The estimation of parameters can also be done relatively easily, which makes the NIG distribution more useful in financial markets. The maximum likelihood estimation and the method of moments estimation are easy to implement; however, we may encounter a problem in practice when a relationship among the moments is violated. In this paper, we investigate this problem in the parameter estimation and try to find a simple solution through simulations. We examine the effect of our adjusted estimation method with real data: daily log returns of KOSPI, S&P500, FTSE and HANG SENG. We also checked the performance of our method by computing the value at risk of daily log return data. The results show that our method improves the stability of parameter estimation, while it retains a comparable performance in goodness-of-fit.

A Graphical Method to Assess Goodness-of-Fit for Inverse Gaussian Distribution (역가우스분포에 대한 적합도 평가를 위한 그래프 방법)

  • Choi, Byungjin
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.1
    • /
    • pp.37-47
    • /
    • 2013
  • A Q-Q plot is an effective and convenient graphical method to assess a distributional assumption of data. The primary step in the construction of a Q-Q plot is to obtain a closed-form expression to represent the relation between observed quantiles and theoretical quantiles to be plotted in order that the points fall near the line y = a + bx. In this paper, we introduce a Q-Q plot to assess goodness-of-fit for inverse Gaussian distribution. The procedure is based on the distributional result that a transformed random variable $Y={\mid}\sqrt{\lambda}(X-{\mu})/{\mu}\sqrt{X}{\mid}$ follows a half-normal distribution with mean 0 and variance 1 when a random variable X has an inverse Gaussian distribution with location parameter ${\mu}$ and scale parameter ${\lambda}$. Simulations are performed to provide a guideline to interpret the pattern of points on the proposed inverse Gaussian Q-Q plot. An illustrative example is provided to show the usefulness of the inverse Gaussian Q-Q plot.

Computing the Ruin Probability of Lévy Insurance Risk Processes in non-Cramér Models

  • Park, Hyun-Suk
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.4
    • /
    • pp.483-491
    • /
    • 2010
  • This study provides the explicit computation of the ruin probability of a Le¢vy process on finite time horizon in Theorem 1 with the help of a fluctuation identity. This paper also gives the numerical results of the ruin probability in Variance Gamma(VG) and Normal Inverse Gaussian(NIG) models as illustrations. Besides, the paths of VG and NIG processes are simulated using the same parameter values as in Madan et al. (1998).

Valuation of European and American Option Prices Under the Levy Processes with a Markov Chain Approximation

  • Han, Gyu-Sik
    • Management Science and Financial Engineering
    • /
    • v.19 no.2
    • /
    • pp.37-42
    • /
    • 2013
  • This paper suggests a numerical method for valuation of European and American options under the two L$\acute{e}$vy Processes, Normal Inverse Gaussian Model and the Variance Gamma model. The method is based on approximation of underlying asset price using a finite-state, time-homogeneous Markov chain. We examine the effectiveness of the proposed method with simulation results, which are compared with those from the existing numerical method, the lattice-based method.

Bayesian Model Selection in Analysis of Reciprocals

  • Kang, Sang-Gil;Kim, Dal-Ho
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.85-93
    • /
    • 2005
  • Tweedie (1957a) proposed a method for the analysis of residuals from an inverse Gaussian population paralleling the analysis of variance in normal theory. He called it the analysis of reciprocals. In this paper, we propose a Bayesian model selection procedure based on the fractional Bayes factor for the analysis of reciprocals. Using the proposed model procedures, we compare with the classical tests.

  • PDF

Bayesian Model Selection in Analysis of Reciprocals

  • Kang, Sang-Gil;Kim, Dal-Ho;Cha, Young-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.1167-1176
    • /
    • 2005
  • Tweedie (1957a) proposed a method for the analysis of residuals from an inverse Gaussian population paralleling the analysis of variance in normal theory. He called it the analysis of reciprocals. In this paper, we propose a Bayesian model selection procedure based on the fractional Bayes factor for the analysis of reciprocals. Using the proposed model selection procedures, we compare with the classical tests.

  • PDF

How to Improve Classical Estimators via Linear Bayes Method?

  • Wang, Lichun
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.6
    • /
    • pp.531-542
    • /
    • 2015
  • In this survey, we use the normal linear model to demonstrate the use of the linear Bayes method. The superiorities of linear Bayes estimator (LBE) over the classical UMVUE and MLE are established in terms of the mean squared error matrix (MSEM) criterion. Compared with the usual Bayes estimator (obtained by the MCMC method) the proposed LBE is simple and easy to use with numerical results presented to illustrate its performance. We also examine the applications of linear Bayes method to some other distributions including two-parameter exponential family, uniform distribution and inverse Gaussian distribution, and finally make some remarks.

Numerical studies on approximate option prices (근사적 옵션 가격의 수치적 비교)

  • Yoon, Jeongyoen;Seung, Jisu;Song, Seongjoo
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.2
    • /
    • pp.243-257
    • /
    • 2017
  • In this paper, we compare several methods to approximate option prices: Edgeworth expansion, A-type and C-type Gram-Charlier expansions, a method using normal inverse gaussian (NIG) distribution, and an asymptotic method using nonlinear regression. We used two different types of approximation. The first (called the RNM method) approximates the risk neutral probability density function of the log return of the underlying asset and computes the option price. The second (called the OPTIM method) finds the approximate option pricing formula and then estimates parameters to compute the option price. For simulation experiments, we generated underlying asset data from the Heston model and NIG model, a well-known stochastic volatility model and a well-known Levy model, respectively. We also applied the above approximating methods to the KOSPI200 call option price as a real data application. We then found that the OPTIM method shows better performance on average than the RNM method. Among the OPTIM, A-type Gram-Charlier expansion and the asymptotic method that uses nonlinear regression showed relatively better performance; in addition, among RNM, the method of using NIG distribution was relatively better than others.

Value at Risk of portfolios using copulas

  • Byun, Kiwoong;Song, Seongjoo
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.1
    • /
    • pp.59-79
    • /
    • 2021
  • Value at Risk (VaR) is one of the most common risk management tools in finance. Since a portfolio of several assets, rather than one asset portfolio, is advantageous in the risk diversification for investment, VaR for a portfolio of two or more assets is often used. In such cases, multivariate distributions of asset returns are considered to calculate VaR of the corresponding portfolio. Copulas are one way of generating a multivariate distribution by identifying the dependence structure of asset returns while allowing many different marginal distributions. However, they are used mainly for bivariate distributions and are not widely used in modeling joint distributions for many variables in finance. In this study, we would like to examine the performance of various copulas for high dimensional data and several different dependence structures. This paper compares copulas such as elliptical, vine, and hierarchical copulas in computing the VaR of portfolios to find appropriate copula functions in various dependence structures among asset return distributions. In the simulation studies under various dependence structures and real data analysis, the hierarchical Clayton copula shows the best performance in the VaR calculation using four assets. For marginal distributions of single asset returns, normal inverse Gaussian distribution was used to model asset return distributions, which are generally high-peaked and heavy-tailed.