• Title/Summary/Keyword: normal human epidermal keratinocyte

Search Result 12, Processing Time 0.024 seconds

Effects of Titrated Extract of Centella asiatica and Epidermal Growth Factor on the Proliferation of Human Epidermal Keratinocyte (Centella asiatica 추출물 및 표피성장인자가 각질형성세포의 증식에 미치는 효과)

  • 김홍표;김영중
    • Biomolecules & Therapeutics
    • /
    • v.3 no.1
    • /
    • pp.80-84
    • /
    • 1995
  • Effects of titrated extract of Centella asiatica (TECA) and epidermal growth factor (EGF) isolated from the urine of pregnant horse on the proliferation of human epidermal keratinocyte in culture were studied. An increase in the number of keratinocyte was observed with the treatment of TECA at the concentration ranges from 1 $\mu\textrm{g}$/mι to 100 $\mu\textrm{g}$/mι. Effects of low molecular weight EGF (LEGF) and high molecular weight EGF (HEGF) on the proliferation of keratinocyte in culture were also studied. The number of keratinocyte in culture was significantly increased with LEGF and HEGF respectively at the concentration of 10 ng/mι. Simultaneous treatment of the keratinocyte with LEGF, HEGF and TECA led to the increased proliferation of keratinocytes resulting 96% of the effect of a positive control, EGF isolated from mouse submaxillary glands.

  • PDF

Epidermal Homeostasis and Dry Skin Management (표피항상성과 건조피부의 관리)

  • Park, Chang-Seo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Epidermis is one of the most dynamic organs in the human body. Multiple layers of keratinocytes in the epidermis continuously undergo proliferation, differentiation, and desquamation cycles, which is the bases of maintaining the epidermal homeostasis. Epidermal homeostasis eventually leads to establish and maintain permeability barrier homeostasis, the most important function of the epidermis. The permeability barrier is located in the stratum corneum. Tightly coordinated regulations are required for the sustained normal barrier function. Extensive studies have established that several nuclear hormone liposensors, including peroxisome proliferator-activated receptor a PPARa, PPARb/d, PPARg and LXRs are expressed in keratinocyte. Activation of PPARs and LXRs could provide a mechanism to coordinate the formation of the corneocytes and extracellular lipid membranes that constitute the stratum corneum. Topical application of PPAR/LXR ligands to murine skin results in the increased expression of keratinocyte differentiation-related proteins, such as involucrin, loricrin, profilaggrin, and trans-glutaminase 1, which would stimulate cornified envelope formation. In conclusion, topical application of ligands or activators of PPAR/LXR as an epidermotherapy would be a promising option to deal dry skin conditions such as atopy.

Anti-aging Effect of Agarum cribrosum in UVA-irradiated Normal Human Epidermal Keratinocytes (자외선 조사에 의해 노화된 인간각질형성세포에서 구멍쇠미역 추출물의 항노화 효능)

  • Shim, Joong Hyun
    • Korean Journal of Pharmacognosy
    • /
    • v.52 no.4
    • /
    • pp.228-233
    • /
    • 2021
  • This research was carried out to investigate the moisturizing effects of Agarum cribrosum extract on normal human epidermal keratinocytes (NHEKs). Moisturizing effects of A. cribrosum extract on NHEKs were measured by quantitative realtime RT-PCR to verify the gene expressions related to skin hydration, hyaluronic acid (HA)-ELISA to detect HA production, and cell viability assays. A. cribrosum extract increased the mRNA levels of the AQP3 and HAS2 genes and HA production in NHEKs. On the other hand, A. cribrosum extract decreased the mRNA level of the KRT1 and KRT10 genes known as differentiated keratinocyte marker in NHEKs. This research showed the moisturizing effects of A. cribrosum extract. The results indicate that A. cribrosum extract can be a potent functional ingredient for skin hydration and anti-aging products. Further study is warranted regarding the use of A. cribrosum extract to develop not only cosmetics but also food and medicine.

Phosphatidylserine Enhances Skin Barrier Function Through Keratinocyte Differentiation (포스파티딜세린의 각질세포 분화 유도를 통한 피부장벽 기능 강화)

  • Chung, So-Young;Nam, Sang-June;Choi, Wang-Keun;Seo, Mi-Young;Kim, Jin-Wook;Lee, Seung-Hun;Park, Chang-Seo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.1 s.55
    • /
    • pp.17-22
    • /
    • 2006
  • Phosphatidyiserine (PS) is a phospholipid which plays the structural role in membranes and serves as a cofactor of signaling enzymes for diverse cellular functions. In this study, we observed that topical treatment with PS significantly decreased trans-epidermal water loss (TEWL) induced by tape-stripping in hairless mice. Also, ceramides in epidermis were increased in PS-treated group compared to vehicle-treated one in vivo. the amounts of non-hydroxyl ceramide (NHCER) (1.4 fold) and glucosylceramide (glucosylCER) (1.6 fold), in the skin of hairless mice, were increased by topical treament with PS. Also, we demonstrated that PS stimulated keratinocyte differentiation. We observed that PS treatment morphologically altered normal human keratinocyte (NHK) from the proliferating phase to the differentiating one, suggesting that PS stimulated epidermal differentiation in NHK. We also showed that the expressions of the specific markers for epidermal differentiation, involucrin (INV) (3.5 fold up) and transglutaminase 1 (TG'ase 1) (3 fold up), were significantly increased by PS treatment, compared to untreated control in vitro. In addition, topical treatment with PS resulted in a progressive increase in INV and loricrin protein levels in vivo. In conclusion, we provide the first evidence for the physiological activities of PS in skin, and we suggest that PS strengthen the epidermal permeability harrier by stimulation of keratinocyte differentiation.

The Level of UVB-induced DNA Damage and Chemoprevention Effect of Paeoniflorin in Normal Human Epidermal Kerationcytes

  • Lim, Jun-Man;Park, Mun-Eok;Lee, Sang-Hwa;Kang, Sang-Jin;Cho, Wan-Goo;Rang, Moon-Jeong
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.2
    • /
    • pp.111-115
    • /
    • 2005
  • Ultraviolet (UV) radiation to mammalian skin is known to alter cellular function via generation of Reactive Oxygen Species (ROS), DNA damage and DNA lesions, such as pyrimidine dimmers and photoproducts, which could lead to DNA mutation if they are not repaired. In this study, we have investigated the reduction of DNA damage and of apoptosis with a particular attention to genetic effect of paeoniflorin in Normal Human Epidermal Keratinocytes (NHEK). After UVB irradiation from $10\;to\;500mJ/cm^{2}$ to NHEK, Mean Tail Moments (MTM) were increased with UVB dose increase. The greatest amount of strand breaks was induced at $500mJ/cm^{2}$ of UVB. Even at the lowest dose of UVB ($10mJ/cm^{2}$), change in MTM was detected (P<0.0001). Pretreated cell with 0.1% paeoniflorin maximally reduced the level of DNA damage to about 21.3%, compared to untreated cell. In the lower concentrations less than 0.01% of paeoniflorin, MTM had a small increase but paeoniflorin still had reductive effects of DNA damage. We measured the apoptosis suppression of paeoniflorin with annexin V flous staining kit. As we observed under the fluorescence microscopy to detect apoptosis in the irradiated cell, the fluorescence intensity was clearly increased in the untreated cell, but decreased in treated cells with paeoniflorin. These results suggest that paeoniflorin reduces the alteration of cell membranes and prevents DNA damage. Therefore, the use of paeoniflorin as a free radical scavenger to reduce the harmful effects of UV lights such as chronic skin damage, wrinkling and skin cancer can be useful to prevent the formation of photooxidants that result in radical damage.

The Effect of Chrysin on the Transcriptional Activity of Vitamin D Receptor in Human Keratinocytes (각질형성세포에서 Chrysin이 Vitamin D Receptor의 전사 활성화에 미치는 영향)

  • Choo, Jung Ha;Lee, Sang Hwa
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.1
    • /
    • pp.75-81
    • /
    • 2013
  • Chrysin (5,7-dihydroxyflavone) is a natural flavonoid found in various plants and foods such as propolis and honey. It has been reported that chrysin has various biological effects including antioxidant, anti-aging, anti-inflammatory and anti-cancer. In this study, we investigated the effect of chrysin on the transcriptional activity of VDR in human epidermal keratinocytes by performing dual-luciferase assay. Chrysin significantly induced the transcriptional activity of VDR in a concentration-dependent manner. The VDR mRNA expression was investigated by quantitative real time PCR and chrysin increased the VDR mRNA expression in normal human epidermal keratinocytes. We also found that chrysin increased the expression of keratinocyte differentiation markers such as keratin 10, involucrin and filaggrin. Therefore, the results suggest that chrysin can stimulate the differentiation of human keratinocytes by increasing transcriptional activity of VDR.

Regulation of Proopiomelanocortin and Melanocortin 1 Receptor by UVB: Inhibitory Effect of Antioxidants

  • Funasaka, Yoko
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.201-204
    • /
    • 2002
  • Epidermal cells produce a panel of antioxidants as well as cytokines after UVB irradiation, which counteract reactive oxygen species, however, how these antioxidants might regulate melanogenesis is unclear. An important constituent of the cellular antioxidant buffering system which controls the redox state of proteins is thioredoxin (TRX), a 13-kD protein that catalyzes thiol-disulfide exchange reactions, regulates activation of transcription factors, and possesses several other biological functions similar to cytokines. TRX suppressed the UVB-induced production and secretion of $\alpha$-melanocyte stimulating hormone ($\alpha$-MSH) and of adrenocorticotropic hormone (ACTH), and also suppressed proopiomelanocortin (POMC) mRNA expression by normal human keratinocyte (KC)s. Further, L-cysteine, N-acetyl-cysteine, $\alpha$-tocopheryl ferulate showed suppressive effect on UVB-induced POMC mRNA expression. However, TRX released from UVB-irradiated KCs stimulated melanogenesis by up-regulating MSH receptor expression and its binding activity in melanocyte (MC)s. UVB-induced KC derived cytokines such as IL1, IL6, and ET1 upregulated MSH-receptor binding ability as well as MCl-R mRNA expression in cultured normal human MCs. MCl-R has a tendency to be upregulated by UVB-induced KC-derived cytokines as well as by direct UVB irradiation. These results suggest that antioxidants such as TRX suppresses UVB induction of POMC, but in the case of MCl-R, this gene can be mainly in the trend of upregulation by UVB-induced KC-derived factors including TRX.

  • PDF

Application of Human Dermal Fibroblast and Keratinocyte on Allogenic Dermis(AlloDerm®) (동종진피에 사람진피 섬유모세포와 각질세포를 적용한 인공피부의 실험적 제작)

  • Oh, Jung Chul;Lim, Yeung Kook;Jeong, Jae Ho
    • Archives of Plastic Surgery
    • /
    • v.33 no.5
    • /
    • pp.601-605
    • /
    • 2006
  • Purpose: Large skin defect by various causes, should be covered by autologous skin graft. But, the donor site of autologous skin graft is limited and leaves permanent donor scar and contracture. There have been our trial to engineer artificial skin using allogenic dermis (AlloDerm) with basement membrane. Methods: Dermal and epidermal layer were separated by immersing in dipase solution for 30 minutes, and the separated layers were treated with 0.05% trypsin for 10 minutes. And then each layer was cultivated to fibroblasts and keratinocytes on a culture medium. Fibroblasts were first penetrated into basement membrane of allogenic dermis facing down, then allogenic dermis was flipped over to face up and keratinocytes were transplanted to allogenic dermis. Results: Observing artificial skin fabricated in vitro, we found following: 1) The artificial skin opened in air for 5 days formed epidermal layer. In dermal layer, fibroblast was distributed evenly among all. 2) The artificial skin opened in air for 30 days formed thicker and thicker, and it formed basement membrane, spinous and granular layers. PAS stain to confirm existence of basement membrane showed positive reaction. 3) Cytokeratin 10 stain to confirm the formation of epidermal layer showed positive reaction. 4) The formation of thick keratin, lamellar body and desmosome similar to human skin were observed in result of an electron micrograph. Conclusion: As a result of research, the structure seen in normal skin such as rete ridge, is found in reproduced artificial skin. This type of artificial skin can be used as a useful model for investigating skin disease and for clinical application also.

HPV 16 E6/E7 Transgenic Mice have Hyperkeratosis and Elevated ROS Related Enzyme Activities

  • Kim, Myoung-Ok;Lee, Eun-Ju;Kim, Sung-Hyun;Park, Jun-Hong;Kyoungin-Cho;Jung, Boo-Kyung;Kim, Hee-Chul;Sol ha Hwang;Kim, Sun-Jung
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.45-45
    • /
    • 2003
  • Human papillomavirus type 16(HPV16) has been known to the major factor for the development of uterine cervical carcinomas. We have extended these studies to investigate the in vivo activities of HPV-16 E6/E7 when expressed in squamous epithelia of transgenic mice. Grossly, hK14HPV16E6/E7 transgenic mice had multiple phenotypes, including wrinkled skin that was apparent prior to the appearance of hair on neonates, thickened ears, and loss of hair in adults. In the transgenic mice, the wrinkled skin phenotype on the body and legs died at the age of 3∼4 weeks. Histological analysis of demonstrated that E6/E7 causes epidermal hyperplasia in multiple transgenic lineages with high penetrance. This epithelial hyperplasia was characterized by an expansion of the proliferating compartment and an expansion of the keratinocyte and was associated with hyperkeratosis. These transgenic mice expressed E6/E7 transgene mainly in skin, heart, pancreas and kidney. Hyperplasia was found at the skin. The enzyme activities of GR, GPx and CuZnSOD were measured from the transgene cause keratinocyte at the skin. The specific enzyme activities were significantly higher in transgenic mice skin compared to the normal mice skin. Thus these transgenic mice may be useful for the develpment of antioxidant enzymes or other therapies for HPV-associated hyperkeratosis.

  • PDF

HPV 16 E6/E7 Transgenic Mice Have Hyperkeratosis and Modulated Antioxidant Enzyme Activities

  • Kim, Myoung-Ok;Lee, Eun-Ju;Kim, Sung-Hyun;Park, Jun-Hong;Cho, Kyoungin;Jung, Boo-Kyung;Kim, Hee-Chul;Hwnag, Sol-Ha;Kim, Sun-Jung;Ryoo, Zae-Young
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.106-106
    • /
    • 2003
  • Human papillomavirus type 16(HPV16) has been known to the major factor for the development of uterine cervical carcinomas. We have extended these studies to investigate the in vivo activities of HPV-16 E6/E7 when expressed in squamous epithelia of transgenic mice. Grossly, hK14HPV16E6/E7 transgenic mice had multiple phenotypes, including wrinkled skin that was apparent prior to the appearance of hair on neonates, thickened ears, and loss of hair in adults. In the transgenic mice, the wrinkled skin phenotype on the body and legs died at the age of 3-4 weeks. Histological analysis of demonstrated that E6/E7 causes epidermal hyperplasia in multiple transgenic lineages with high penetrance. This epithelial hyperplasia was characterized by an expansion of the proliferating compartment and an expansion of the keratinocyte and was associated with hyperkeratosis. These transgenic mice expressed E6/E7 transgene mainly in skin, heart, pancreas and kidney. Hyperplasia was found at the skin. The enzyme activities of GR, GPx and CuZnSOD were measured from the transgene cause keratinocyte at the skin. The specific enzyme activities were significantly higher in transgenic mice skin compared to the normal mice skin. Thus these transgenic mice may be useful for the develpment of antioxidant enzymes or other therapies for HPV-associated hyperkeratosis.

  • PDF