• Title/Summary/Keyword: normal fault

Search Result 564, Processing Time 0.028 seconds

Analysis of underground post-tensioned precast concrete box utility tunnel under normal fault displacement

  • Wu, Xiangguo;Nie, Chenhang;Qiu, Faqiang;Zhang, Xuesen;Hong, Li;Lee, Jong-Sub;Kang, Thomas H.K.
    • Computers and Concrete
    • /
    • v.29 no.2
    • /
    • pp.69-79
    • /
    • 2022
  • For long underground box utility tunnels, post-tensioned precast concrete is often used. Between precast tunnel segments, sealed waterproof flexible joints are often specified. Fault displacement can lead to excessive deformation of the joints, which can lead to reduction in waterproofing due to diminished contact pressure between the sealant strip and the tunnel segment. This paper authenticates utilization of a finite element model for a prefabricated tunnel fault-crossing founded on ABAQUS software. In addition, material parameter selection, contact setting and boundary condition are reviewed. Analyzed under normal fault action are: the influence of fault displacement; buried depth; soil friction coefficient, and angle of crossing at the fault plane. In addition, distribution characteristics of the utility tunnel structure for vertical and longitudinal/horizontal relative displacement at segmented interface for the top and bottom slab are analyzed. It is found that the effect of increase in fault displacement on the splice joint deformation is significant, whereas the effects of changes in burial depth, pipe-soil friction coefficient and fault-crossing angle on the overall tunnel and joint deformations were not so significant.

Experimental and numerical studies on mechanical behavior of buried pipelines crossing faults

  • Zhang, Dan F.;Bie, Xue M.;Zeng, Xi;Lei, Zhen;Du, Guo F.
    • Structural Engineering and Mechanics
    • /
    • v.75 no.1
    • /
    • pp.71-86
    • /
    • 2020
  • This paper presents a study on the mechanical behavior of buried pipelines crossing faults using experimental and numerical methods. A self-made soil-box was used to simulate normal fault, strike-slip fault and oblique slip fault. The effects of some important parameters, including the displacement and type of fault, the buried depth and the diameter of pipe, on the deformation modes and axial strain distribution of the buried pipelines crossing faults was studied in the experiment. Furthermore, a finite element analysis (FEA) model of spring boundary was developed to investigate the performance of the buried pipelines crossing faults, and FEA results were compared with experimental results. It is found that the axial strain distribution of those buried pipelines crossing the normal fault and the oblique fault is asymmetrical along the fault plane and that of buried pipelines crossing the strike-slip fault is approximately symmetrical. Additionally, the axial peak strain appears near both sides of the fault and increases with increasing fault displacement. Moreover, the axial strain of the pipeline decreases with decreasing buried depth or increasing ratios of pipe diameter to pipe wall thickness. Compared with the normal fault and the strike-slip fault, the oblique fault is the most harmful to pipelines. Based on the accuracy of the model, the regression equations of the axial distance from the peak axial strain position of the pipeline to the fault under the effects of buried depth, pipe diameter, wall thickness and fault displacement were given.

Fault Detection and Identification of Uninhabited Aerial Vehicle using Similarity Measure (유사측도를 이용한 무인기의 고장진단 및 검출)

  • Park, Wook-Je;Lee, Sang-Hyuk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.2
    • /
    • pp.16-22
    • /
    • 2011
  • It is recognized that the control surface fault is detected by monitoring the value of the coefficients due to the control surface deviation. It is found out the control surface stuck position by comparing the trim value with the reference value. To detect and isolate the fault, two mixed methods apply to the real-time parameter estimation and similarity measure. If the scatter of aerodynamic coefficients for the fault and normal are closing nearly, fault decision is difficult. Applying similarity measure to decide for fault or not, it makes a clear and easy distinction between fault and normal. Low power processor is applied to the real-time parameter estimator and computation of similarity measure.

A Study of Fault Site at Byeonggok-myeon, Yeongdeok-gun, South Korea (영덕군 병곡면의 단층 노두 특성에 대한 연구)

  • Shin, Won Jeong;Kim, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.3
    • /
    • pp.63-83
    • /
    • 2021
  • In the southeastern part of the Korean Peninsula, the Yangsan Fault, an active fault zone, has developed. Many earthquakes occur around these faults, and the possibility of earthquakes occurring along the branch faults is being discussed. On the other hand, the Yeongdeok Fault is reported in Yeongdeok-gun, which is the northern part of the Yangsan fault. In this study, goemorphic characteristics of a set faults found on the outcrop of the gentle slope of the coast of Byeonggok-myeon were analyzed and granulometric and geochemical characteristics of sediments and other materials, including fault gouges were analyzed. The outcrop of Byeonggok-myeon is the part of the fault core and can be divided into two parts. Theses fault are formed on the upper part of the Mesozoic bedrock and the tertiary sedimentary layer of red sand-supported clasts are covered in several sedimentary units. The faults were normal fault sets, and a number of vertical cracks were developed, and glossy surfaces were observed in the fault area. It appears that these faults have occurred after alluvial deposition had been formed. In the case of samples from fault gouges, there were differences in particle size and geochemical characteristics from the surrounding area.

A Trip Coil Fault Detection of Circuit Breaker (차단기 트립코일 이상감지 장치)

  • Youn, Ju-Houc;Lee, Jong-Hun;Park, Noh-Sik;Lee, Dong-Hea
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.2
    • /
    • pp.61-68
    • /
    • 2011
  • The circuit breaker of power distribution board is essential part for the protection of electrical disaster from load short, trouble of power system. For the normal operation of circuit breaker, trip coil of the circuit breaker can cut the mechanical contact of circuit breaker from the detection of power system troubles. This paper presents a design and experimental results of trip coil fault detection system for the real time monitoring of the circuit breaker. The designed system is consisted by the trip coil fault detector which is connected to the each circuit breaker and remote monitoring unit. The trip coil fault detector can detect the impedance and operating voltage of the trip coil, and the detected values are compared with the normal state. And the remote monitoring unit can be connected to the 32 channels of trip coil fault detectors by serial communication. From the designed system, the fault and normal states of the trip coil can be remotely monitored in real time. The designed system is verified by the practical circuit breaker of power distribution board. And the results shows the effectiveness of the designed system.

A Model for Machine Fault Diagnosis based on Mutual Exclusion Theory and Out-of-Distribution Detection

  • Cui, Peng;Luo, Xuan;Liu, Jing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.2927-2941
    • /
    • 2022
  • The primary task of machine fault diagnosis is to judge whether the current state is normal or damaged, so it is a typical binary classification problem with mutual exclusion. Mutually exclusive events and out-of-domain detection have one thing in common: there are two types of data and no intersection. We proposed a fusion model method to improve the accuracy of machine fault diagnosis, which is based on the mutual exclusivity of events and the commonality of out-of-distribution detection, and finally generalized to all binary classification problems. It is reported that the performance of a convolutional neural network (CNN) will decrease as the recognition type increases, so the variational auto-encoder (VAE) is used as the primary model. Two VAE models are used to train the machine's normal and fault sound data. Two reconstruction probabilities will be obtained during the test. The smaller value is transformed into a correction value of another value according to the mutually exclusive characteristics. Finally, the classification result is obtained according to the fusion algorithm. Filtering normal data features from fault data features is proposed, which shields the interference and makes the fault features more prominent. We confirm that good performance improvements have been achieved in the machine fault detection data set, and the results are better than most mainstream models.

A Data Fault Detection System for Diesel Engines Using Neural Networks (신경회로망을 이용한 디젤기관의 데이터 이상감지 시스템에 관한 연구)

  • 천행춘;유영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.493-500
    • /
    • 2002
  • The operational data of diesel generator engine is two kinds of data. One is interactive the other is non interactive. We can find the fault information from interactive data measured for every sampling time when the changing rate, direction and status of data are investigated in comparition with those of normal status to diagnose the fault of combustion system. The various data values of combustion system for diesel engine are not proportional to load condition. The criterion to decide the level of data value is not absolute but relative to relational data. This study proposes to compose malfunction diagnosis engine using neural networks to decide that level of data value is out of normal status with the data collected from generator engine of the ship using the commercial data mining tool. This paper investigates the real ship's operational data of diesel generator engine and confirms usefulness of fault detecting through simulations for fault detecting.

A Study on the Parameter Estimation of DURUMI-II for the Fixed Right Elevator Using Flight Test Data

  • Park Wook-Je;Kim Eung-Tai;Seong Kie-Jeong;Kim Yeong-Cheol
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1224-1231
    • /
    • 2006
  • The stability and control derivatives of DURUMI-lI UAV using the flight test are obtained. The flight test data is gathered from the normal flight condition (normal mode) and the flight condition assumed as the right elevator fixed (fault mode). Using real-time parameter estimation techniques, applied to Fourier transform regression method, simulates the aircraft motion. From the result, the fault of control surface is to be detected. In this paper, the results of the real- time parameter estimation techniques are compared with the results of the Advanced Aircraft Analysis (AAA). Using the aerodynamic derivatives, it provides the base line of normal/failure for the control surface by using the on-line parameter estimation of Fourier transform regression. In flight, this approach maybe helpful to detect and isolate the fault of primary control surface. It is explained how to perform the flight condition assumed as the right elevator fixed in the flight test. Also, it is mentioned how to switch between the normal flight condition and the assumed fault flight condition.

DSP based Real-Time Fault Determination Methodology using Artificial Neural Network in Smart Grid Distribution System (스마트 그리드 배전계통에서 인공신경회로망을 이용한 DSP 기반 실시간 고장 판단 방법론 기초 연구)

  • Jin-Eun Kim;Yu-Rim Lee;Jung-Woo Choi;Byung-Hoon Roh;Yun-Seok Ko
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.817-826
    • /
    • 2023
  • In this paper, a fault determination methodology based on an artificial neural network was proposed to protect the system from faults on the lines in the smart grid distribution system. In the proposed methodology, first, it was designed to determine whether there is a low impedance line fault (LIF) based on the magnitude of the current RMS value, and if it is determined to be a normal current, it was designed to determine whether a high impedance ground fault (HIF) is present using Normal/HIF classifier based on artificial neural network. Among repetitive DSP module-based algorithm verification tests, the normal/HIF classifier recognized the current waveform as normal and did not show reclosing operation for the cases of normal state current waveform simulation test where the RMS value was smaller than the minimum operating current value. On the other hand, for the cases of LIF where RMS value is greater than the minimum operating current value, the validity of the proposed methodology could be confirmed by immediately recognizing it as a fault state and showing reclosing operation according to the prescribed procedure.

Analysis of Transient Characteristics of SFCL using the Three-Phase Transformer and Power Switch (삼상 변압기와 전력용 스위치를 이용한 초전도 한류기의 과도특성 해석)

  • Jung, Byung-Ik;Choi, Hyo-Sang;Park, Jung-Il;Cho, Geum-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1743-1747
    • /
    • 2012
  • The research of superconducting fault current limiter (SFCL) for reduction of the fault current is actively underway in the worldwide. In this paper, we analyzed the characteristics of a SFCL using the transformer and superconducting elements combined mutually in accordance with the fault types. The structure of this SFCL was composed of the secondary and third windings of a transformer connected to the load and the superconducting element, respectively. The provided electric power flew into the load connected to the secondary winding of the transformer in normal state. On the other hand, when the fault occurred in power system, the fault current was limited by closing the line of third winding of the transformer. At this time, the effect of the fault was minimized by opening the fault line in secondary winding of a transformer in power system. The sensing of the fault state was performed by the current transformer(CT) and then turn-on and turn-off switching behavior of the secondary line in the transformer was performed by the silicon-controlled rectifier(SCR). As a result, the proposed SFCL limited the fault current within one-cycle efficiently. Also, the degradation of the superconducting element in the normal state was avoided.