• Title/Summary/Keyword: normal aggregate

Search Result 279, Processing Time 0.024 seconds

Physical and Mechanical Properties of Synthetic Lightweight Aggregate Concrete (인공경량골재(人工輕量骨材) 콘크리트 물리(物理)·역학적(力學的) 특성(特性))

  • Kim, Seong Wan;Min, Jeong Ki;Sung, Chan Yong
    • Korean Journal of Agricultural Science
    • /
    • v.24 no.2
    • /
    • pp.182-193
    • /
    • 1997
  • The normal cement concrete is widely used material to build the construction recently, but it has a fault to increase the dead load on account of its unit weight is large compared with strength. Therefore, many engineers are continuously searching for new materials of construction to provide greater performance at lower density. The main purpose of the work described in this paper were to establish the physical and mechanical properties of synthetic lightweight aggregate concrete using perlite on fine aggregate and expanded clay, pumice stone on coarse aggregate. The test results of this study are summarized that the water-cement ratio was shown 47% using expanded clay, 56% using pumice stone on coarse aggregate, unit weight was shown $l,622kgf/m^3$ using expanded clay, $l,596kgf/m^3$ using pumice stone on coarse aggregate, and the absorption ratio was shown same as 17%. The compressive strength was shown more than $228kgf/cm^2$, tensile and bending strength was more than $27kgf/cm^2$, $58kgf/cm^2$ at all types, and rebound number with schmidt hammer was increased with increase of compressive strength. The static modulus was $1.12{\times}10^5kgf/cm^2$ using expanded clay, $1.09{\times}10^5kgf/cm^2$ using pumice stone on coarse aggregate, and stress-strain curves were shown that increased with increase of stress, and the strain on the maximum stress was shown identical with $2.0{\times}10^{-3}$, approximately.

  • PDF

Properties of Normal-Strength Mortar Containing Coarsely-Crushed Bottom Ash Considering Standard Particle Size Distribution of Fine Aggregate (잔골재 표준입도를 고려하여 조파쇄 바텀애시를 혼입한 일반강도 모르타르의 성능)

  • Kim, Hyeong-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.531-539
    • /
    • 2015
  • Properties of normal-strength mortar containing coarsely-crushed coal bottom ash considering standard particle size distribution of fine aggregate were investigated. Mortar containing raw bottom ash was applied as a reference. By crushing the bottom ash with a particle size larger than fine binder but smaller than fine aggregates, i.e., coarse-crushing, water absorption and specific gravity of the particles could be controlled as similar levels to those of natural fine aggregates. Workability and strength of the mortar were not changed and even increased when the coarsely-crushed bottom ash was added considering standard particle size distribution in Standard Specification for Concrete, while those were decreased when raw bottom ash was added without any treatment. When a replacement ratio of coarsely-crushed bottom ash was less than 30 vol.%, there were no significant decrease in dynamic modulus of elasticity and dry shrinkage of the mortar.

Shear Transfer in Normal and High Strength Concrete (보통강도 및 고강도 콘크리트의 전단전달)

  • Oh Byung Hwan;Kim Kwang Soo;Lee Jong Hoon;Han Seung Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.585-590
    • /
    • 2001
  • Cracks in concrete can submit shear forces by virtue of the roughness of their interfaces. With regard to this roughness, the crack faces play an important role. By transmitting normal and shear stress across their faces, shear cracks contribute to shear resistance. This process is called shear transfer or more generally, shear friction. Both experimental and analytical program to investigate shear transfer mechanism in normal and high strength concrete were included in this study. The parameters investigated in push-off test included the concrete strength, the presence and amounts of steel stirrups, and aggregate size. Solution procedure based on the truss model was developed to analyze the shear transfer behavior. In general, it can be seen that the analytical results agree well with results of shear transfer test.

  • PDF

Experimental Study on the Elastic Properties and Acid Resistance of Pine Needle Ash Concrete (솔잎재 콘크리트의 탄성특성 및 내산성에 관한 실험적 연구)

  • 남기성;민정기;김영익;서대석;이전성;성찬용
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.271-276
    • /
    • 1999
  • This study is performed to evaluate an elastic properties and acid-resistance of concrete using pine needle ash(PNA). Materials used for this experiment are PNA , normal portland cement, natural fine and coarse aggregate. Test results show that the highest ultrasonic pulse velocity , dynamic and static modulus of elasticity is achieved by 5% PNA filled PNA concrete, which has showed similar with those of thei normal cement concrete. Acid-resistance of PNA concrete is increased with increase of the contnet of PNA , it is 1.29 times of the normal cement concrete by 5% PNA fille PNA concrete an d2.57 times by 15% PNA filled PNA concrete . Accordingly , PNA concrete wil greatly improve the properties of concrete.

  • PDF

Mechanical properties and radiation shielding performance in concrete with electric arc furnace oxidizing slag aggregate

  • Lim, Hee Seob;Lee, Han Seung;Kwon, Seung Jun
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.4
    • /
    • pp.363-371
    • /
    • 2019
  • In this study, physical properties of normal concrete, magnetite concrete, EAF concrete, and EAF concrete with added iron powder were evaluated and a feasibility of radiation shielding is also evaluated through irradiation tests against X-rays and gamma-rays. While the unit weight of EAF concrete (3.21 t/㎥) appeared lower than that of magnetite concrete (3.50 t/㎥), the results in compressive strength of EAF concrete were greater than those in magnetite and normal concrete. While the radiation transmission rate of normal concrete reaches 26.0% in the X-ray irradiation test, only 6.0% and 9.0% of transmission rate were observed in magnetite concrete and linear relationship with unit volume weight and radiation shielding. In the gamma-ray irradiation test, the performance of EAF and magnetite concretes appeared to be similar. Through the results on the excellent physical properties and radiation shielding performance a potential applicability of EAF concrete to radiation shielding was verified.

Experimental Study on Bond Strength of Deformed Bars in Artificial Lightweight Aggregate Concrete (경량콘크리트의 부착특성에 대한 실험적 연구)

  • Cho, Jang-Se;La, Sung-Jun;Kim, Min-Sook;Lee, Young-Hak;Kim, Hee-Cheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.1
    • /
    • pp.43-53
    • /
    • 2011
  • For reinforced concrete members, the bond strength is one of the important factors between two materials: concrete and reinforcing element. This study concerns the bond strength of deformed bars in artificial lightweight aggregate concrete by pull-out test. 144 cubic specimens were manufactured for the test. concrete compressive strength, size of deformed bar and embedment lengths were considered as variables in this study. Normal concrete with W/C ratio 50% specimens were tested for the comparison. Test results included the bond stress-slip responses and modes of failure. Bond strength increased with an increase of compressive strength of concrete according to W/C ratio. The equation of bond stress of polymer-modified lightweight aggregate concrete were proposed by regression analysis based on the result.

Mesoscale model for cracking of concrete cover induced by reinforcement corrosion

  • Chen, Junyu;Zhang, Weiping;Gu, Xianglin
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.53-62
    • /
    • 2018
  • Cracking of concrete cover induced by reinforcement corrosion is a critical issue for life-cycle design and maintenance of reinforced concrete structures. However, the critical degree of corrosion, based on when the concrete surface cracks, is usually hard to predict accurately due to the heterogeneity inherent in concrete. To investigate the influence of concrete heterogeneity, a modified rigid-body-spring model, which could generate concrete sections with randomly distributed coarse aggregates, has been developed to study the corrosion-induced cracking process of the concrete cover and the corresponding critical degree of corrosion. In this model, concrete is assumed to be a three-phase composite composed of coarse aggregate, mortar and an interfacial transition zone (ITZ), and the uniform corrosion of a steel bar is simulated by applying uniform radial displacement. Once the relationship between radial displacement and degree of corrosion is derived, the critical degree of corrosion can be obtained. The mesoscale model demonstrated its validity as it predicted the critical degree of corrosion and cracking patterns in good agreement with analytical solutions and experimental results. The model demonstrates how the random distribution of coarse aggregate results in a variation of critical degrees of corrosion, which follows a normal distribution. A parametric study was conducted, which indicates that both the mean and variation of critical degree of corrosion increased with the increase of concrete cover thickness, coarse aggregates volume fraction and decrease of coarse aggregate size. In addition, as tensile strength of concrete increased, the average critical degree of corrosion increased while its variation almost remained unchanged.

Drying Shrinkage Evaluation of Concretes with Various Volume-Surface Ratios, Aggregate Types and Concrete Pavement Mixes (시험체 형상비와 골재종류 및 배합특성에 따른 건조수축 특성평가)

  • Yang, Sung-Chul
    • International Journal of Highway Engineering
    • /
    • v.14 no.1
    • /
    • pp.45-53
    • /
    • 2012
  • This study was performed to analyze test results on drying shrinkage for concrete specimens mixed with various constituents in concrete mixes. Test variables are coarse aggregate types(Limestone, Sandstone, Granite, Andesite, Gneiss), fine aggregate types(natural sand, crushed sand) and cement amounts(normal strength, high strength). Epoxy coating of(U&V-H(A,B)) was applied onto the specimen surface to simulate diverse volume surface ratios(22.2, 40, 85.7, 150, 200, 300) with different specimen sizes. The experiments had been executed during 1,014 days at a condition of $20^{\circ}C$ and relative humidity of 60% in environmental chambers. Test results showed that shrinkage strain from the specimen equivalent to real pavement decreased to 39% compared to the standard specimen recommended by KS. Test results also showed that shrinkage strain of the specimen mixed with Limestone was 56~76% of that with Sandstone, thus Limestone mix seems to be suitable to the concrete pavement.

Porosity and Strength Properties of Permeable Concrete Using Limestone Mine Wastes as Coarse Aggregate for Concrete (폐석회석 굵은골재를 사용한 투수 콘크리트의 공극 및 강도특성)

  • 최연왕;임학상;정지승;문대중;신화철
    • Resources Recycling
    • /
    • v.12 no.2
    • /
    • pp.11-20
    • /
    • 2003
  • Limestone mine waste was used as a aggregate far permeable concrete. Void ratio, continuous void ratio, coefficient of permeability, compressive strength and flexural strength of concrete were measured and then the relationship between porosity and strength properties was investigated. Void ratio, continuous void ratio and strength properties of permeable concrete were greatly influenced by the grain size of aggregate and void filling ratio in comparison with the containing ratio of limestone mine waste. Furthermore, void ratio showed a good relation with continuous void ratio, and porosity of permeable concrete indicated a good relation with strength properties also. The coefficient of permeability of permeable concrete using limestone waste was over 0.2 cm/sec and was excellent result in comparison with normal concrete. Therefore, it could be expected that the limestone mine waste would be utilized as aggregate for pavement concrete, green concrete and water resource specie concrete in the results of this study.

A Experimental Study on the Property of Lightweight Aggregate Concrete Using Hollow Micro Sphere (유리질 중공 미소 구체를 사용한 경량골재콘크리트의 특성에 관한 실험적 연구)

  • Kim, Sang Heon;Kim, Se Hwan;Park, Young Shin;Jeon, Hyun Gyu;Seo, Chee Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.2
    • /
    • pp.177-183
    • /
    • 2015
  • In this study, the thermal conductivity, physical and mechanical properties of lightweight aggregate concretes with hollow micro sphere(HMS) are experimentally examined as a basic research for the development of structural insulation concrete. As the results of this experiment, in the case of concrete mixed with HMS, the value of slump has been reduced, so it is found that the dosage of superplasticizer should be increased. As the replacement ratio of HMS increases, it has shown that the compressive strength is somewhat decreased due to the low interfacial adhesion strength of HMS. But the thermal conductivity is found to be greatly improved with the replacement ratio of HMS increases, the thermal conductivity of HMS shows the lower value of 68% at lightweight aggregate concrete and 32% of normal concrete. Also it is found that the compressive strength is decreased and thermal conductivity is increased as the water-cement ratio increases. The most outstanding for insulation performance is observed when using 20% of HMS and 50% of water-cement ratio.