• Title/Summary/Keyword: nonstationary Gumbel model

Search Result 9, Processing Time 0.022 seconds

Comparison Study on the Various Forms of Scale Parameter for the Nonstationary Gumbel Model (다양한 규모매개변수를 이용한 비정상성 Gumbel 모형의 비교 연구)

  • Jang, Hanjin;Kim, Sooyoung;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.5
    • /
    • pp.331-343
    • /
    • 2015
  • Most nonstationary frequency models are defined as the probability models containing the time-dependent parameters. For frequency analysis of annual maximum rainfall data, the Gumbel distribution is generally recommended in Korea. For the nonstationary Gumbel models, the time-dependent location and scale parameters are defined as linear and exponential relationship, respectively. The exponentially time-varying scale parameter of nonstationary Gumbel model is generally used because the scale parameter should be positive. However, the exponential form of scale parameter occasionally provides overestimated quantiles. In this study, various forms of time-varying scale parameters such as exponential, linear, and logarithmic forms were proposed and compared. The parameters were estimated based on the method of maximum likelihood. To compare the accuracy of each scale parameter, Monte Carlo simulation was performed for various conditions. Additionally, nonstationary frequency analysis was conducted for the sites which have more than 30 years data with a trend in rainfall data. As a result, nonstationary Gumbel model with exponentially time-varying scale parameter generally has the smallest root mean square error comparing with another forms.

A development of nonstationary rainfall frequency analysis model based on mixture distribution (혼합분포 기반 비정상성 강우 빈도해석 기법 개발)

  • Choi, Hong-Geun;Kwon, Hyun-Han;Park, Moon-Hyung
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.11
    • /
    • pp.895-904
    • /
    • 2019
  • It has been well recognized that extreme rainfall process often features a nonstationary behavior, which may not be effectively modeled within a stationary frequency modeling framework. Moreover, extreme rainfall events are often described by a two (or more)-component mixture distribution which can be attributed to the distinct rainfall patterns associated with summer monsoons and tropical cyclones. In this perspective, this study explores a Mixture Distribution based Nonstationary Frequency (MDNF) model in a changing rainfall patterns within a Bayesian framework. Subsequently, the MDNF model can effectively account for the time-varying moments (e.g. location parameter) of the Gumbel distribution in a two (or more)-component mixture distribution. The performance of the MDNF model was evaluated by various statistical measures, compared with frequency model based on both stationary and nonstationary mixture distributions. A comparison of the results highlighted that the MDNF model substantially improved the overall performance, confirming the assumption that the extreme rainfall patterns might have a distinct nonstationarity.

A Study on the Changes of Return Period Considering Nonstationarity of Rainfall Data (강우자료의 비정상성을 고려한 재현기간 변화에 관한 연구)

  • Shin, Hongjoon;Ahn, Hyunjun;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.5
    • /
    • pp.447-457
    • /
    • 2014
  • This research focuses on the changes of return period for nonstationary rainfall data in which exceedance or nonexceedance probability varies depending on time. We examined two definitions of return period under nonstationarity and also performed nonstationary frequency analysis using the nonstationary Gumbel model to investigate variations of return period in Korea. Seogwipo, Inje, Jecheon, Gumi, Mungyeong, and Geochang were selected as subject sites of application. These sites have a trend in rainfall data as well as having more than 30 years data. As the results of application, the return periods considering nonstationarity are different with those considering stationarity. The differences of return periods between nonstationarity and stationarity increase as growing return period increases. In addition, the return period using the expected waiting time method shows lower value than that using the expected number of event method.

Concept of Trend Analysis of Hydrologic Extreme Variables and Nonstationary Frequency Analysis (극치수문자료의 경향성 분석 개념 및 비정상성 빈도해석)

  • Lee, Jeong-Ju;Kwon, Hyun-Han;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4B
    • /
    • pp.389-397
    • /
    • 2010
  • This study introduced a Bayesian based frequency analysis in which the statistical trend analysis for hydrologic extreme series is incorporated. The proposed model employed Gumbel extreme distribution to characterize extreme events and a fully coupled bayesian frequency model was finally utilized to estimate design rainfalls in Seoul. Posterior distributions of the model parameters in both Gumbel distribution and trend analysis were updated through Markov Chain Monte Carlo Simulation mainly utilizing Gibbs sampler. This study proposed a way to make use of nonstationary frequency model for dynamic risk analysis, and showed an increase of hydrologic risk with time varying probability density functions. The proposed study showed advantage in assessing statistical significance of parameters associated with trend analysis through statistical inference utilizing derived posterior distributions.

Nonstationary Frequency Analysis of Hydrologic Extreme Variables Considering of Seasonality and Trend (계절성과 경향성을 고려한 극치수문자료의 비정상성 빈도해석)

  • Lee, Jeong-Ju;Kwon, Hyun-Han;Moon, Young-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.581-585
    • /
    • 2010
  • This study introduced a Bayesian based frequency analysis in which the statistical trend seasonal analysis for hydrologic extreme series is incorporated. The proposed model employed Gumbel and GEV extreme distribution to characterize extreme events and a fully coupled bayesian frequency model was finally utilized to estimate design rainfalls in Seoul. Posterior distributions of the model parameters in both trend and seasonal analysis were updated through Markov Chain Monte Carlo Simulation mainly utilizing Gibbs sampler. This study proposed a way to make use of nonstationary frequency model for dynamic risk analysis, and showed an increase of hydrologic risk with time varying probability density functions. In addition, full annual cycle of the design rainfall through seasonal model could be applied to annual control such as dam operation, flood control, irrigation water management, and so on. The proposed study showed advantage in assessing statistical significance of parameters associated with trend analysis through statistical inference utilizing derived posterior distributions.

  • PDF

Bayesian Nonstationary Probability Rainfall Estimation using the Grid Method (Grid Method 기법을 이용한 베이지안 비정상성 확률강수량 산정)

  • Kwak, Dohyun;Kim, Gwangseob
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.1
    • /
    • pp.37-44
    • /
    • 2015
  • A Bayesian nonstationary probability rainfall estimation model using the Grid method is developed. A hierarchical Bayesian framework is consisted with prior and hyper-prior distributions associated with parameters of the Gumbel distribution which is selected for rainfall extreme data. In this study, the Grid method is adopted instead of the Matropolis Hastings algorithm for random number generation since it has advantage that it can provide a thorough sampling of parameter space. This method is good for situations where the best-fit parameter values are not easily inferred a priori, and where there is a high probability of false minima. The developed model was applied to estimated target year probability rainfall using hourly rainfall data of Seoul station from 1973 to 2012. Results demonstrated that the target year estimate using nonstationary assumption is about 5~8% larger than the estimate using stationary assumption.

Comparison study on the various forms of scale parameter for the nonstationary Gumbel model (비정상성 Gumbel 모형의 다양한 규모 매개변수 형태에 관한 비교 연구)

  • Jang, Hanjin;Kim, Hanbeen;Jung, Jin-Seok;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.147-147
    • /
    • 2015
  • 전 세계적으로 이상기후로 인한 극한가뭄 및 이상홍수 등의 피해 발생이 확인되고 있으며 그 발생빈도 또한 급격히 증가하고 있다. 그러나 기존의 빈도해석은 시간의 변화에 따라 자료의 통계적 특성이 변하지 않는다는 정상성(stationarity)을 기본 가정으로 수행되기 때문에 극한 사상에 경향성이 있는 경우에 적용하기엔 한계가 있다. 비정상성 빈도해석을 위해 개발된 비정상성 확률 분포 모형들은 대부분 매개변수에 시간항을 포함하는 형태로 정의된다. 이중에서도 우리나라에 널리 사용되고 있는 Gumbel 모형에 대해 살펴보면, 비정상성 Gumbel 모형의 위치 및 규모 매개변수는 시간에 대해 선형(linear) 및 지수(exponential) 함수의 관계를 보이는 형태로 가정한다. 규모 매개변수의 지수함수의 형태는 음(-)의 값이 추정되는 것을 방지하기 위해 제안되어 널리 사용되고 있으나 이로 인해 확률수문량이 과다산정되는 문제가 발생하기도 한다. 본 연구에서는 이러한 문제를 해결하기 위해 비정상성 Gumbel 모형을 대상으로 규모 매개변수의 다양한 형태를 비교하고자 한다. 이를 위해 비정상성 Gumbel 모형 규모 매개변수를 지수함수, 선형, 로그, 로지스틱 형태로 가정하여 비교하였다. 각 모형의 매개변수의 추정은 최우도법을 적용하였으며, 규모 매개변수의 형태별 정확도 비교를 위해 모의실험을 수행하였다.

  • PDF

Analysis on Nonstationarity in Mean Sea Level and Nonstationary Frequency Analysis based on Hierarchical Bayesian Model (해수면의 비정상성 검토 및 계층적 Bayesian 모형을 이용한 비정상성 빈도해석 기법 개발)

  • Kim, Yong Tak;Sumiya, Uranchimeg;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.451-451
    • /
    • 2015
  • 최근 1900년부터 1990년 사이 해수면은 매년 평균 1.2mm 상승했지만 1990년부터는 매년 평균 3mm씩 높아지고 있으며, 이에 1990년부터 현재까지 해수면 수위의 상승속도가 이전 90년 동안 측정된 수치보다 2.5배 빠르다는 연구결과가 발표되었다. 해수면 상승으로 인한 피해는 범람과 침식을 야기할 수 있으며 해일 및 폭풍으로 인한 피해를 증가시킴으로 물질적 피해와 인명 피해를 유발할 수 있다. 이러한 이유로 해수면 상승에 따른 과학적인 분석과 신뢰성 있는 전망을 통하여 해수면 상승에 따른 대응과 대비가 필요하다. 이에 본 연구에서는 비정상성 빈도해석 방법을 통하여 미래의 해수면 상승을 고려할 수 있는 비정상성 빈도해석 기법을 개발하였다. 본 연구에서는 극치사상을 추출하기 위해 국립해양조사원 (Korea Hydrographic and Oceanographic Administration, KHOA)에서 관리한 45개 조위관측소의 시 조위 자료를 이용하였다. 45개 조위관측소의 한 시간 단위 자료로부터 연최대 및 연평균 조위계열 (annual average and annual maximum sea level series)을 추출하였다. 본 연구에서는 한반도 해안을 동해안, 서해안, 남해안, 제주 권역으로 구분하고 빈도 해석의 신뢰성을 만족하기 위해 자료 구축기간이 20년 이상이며, 각 해안을 나타낼 수 있는 지점을 선정하였다. 비정상성 빈도해석은 Gumbel 극치분포를 적용하였으며, 계층적 Bayesian 기법을 결합하여 매개변수들에 대한 사후분포를 추정하였다. 본 연구에서는 대부분의 지점에서 비정상성 빈도해석 결과와 정상성 빈도해석 결과와 상당한 차이를 보여주고 있으며, 이는 주로 정상성 가정에 기인하는 문제점으로 판단된다. 향후 기후변화에 따른 연안지역의 홍수 및 사회기반시설의 위험도를 평가하기 위해서는 비정상성을 고려한 빈도해석 절차의 수립과 적용이 필요할 것으로 판단된다.

  • PDF

Nonstationary Frequency Analysis at Seoul Using a Power Model (Power 모형을 이용한 서울지점 비정상성 빈도해석)

  • Lee, Gi-Chun;Kim, Gwang-Seob;Choi, Kyu-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.461-461
    • /
    • 2012
  • 본 연구는 서울 지점의 목표연도(2040, 2070, 2100년)별 재현기간에 따른 확률강수량을 산정하기 위해 지속시간 24시간에 대한 연 최대 강수량 자료를 구축하여 비정상성 빈도해석을 수행하였다. 연 최대강수량 자료를 이용해 초기 20년을 기준으로 1년씩 추가한 연 최대 강수량 누적 자료를 구축한 후, 누적 기간별 자료의 평균, 위치매개변수, 축척매개변수를 산정하였다. Gumbel 분포를 이용해 비정상성 빈도해석을 실시하였으며, 각 매개변수의 경우 확률가중모멘트법을 이용해 산정하였다. 산정된 누적평균 강수량과 연도와의 선형회귀분석을 실시한 방법뿐만 아니라 서울 지점이 속한 한강유역의 전 지점들을 이용한 유역의 누적평균 강수량 자료에 대하여 연도와의 Logsitic 회귀분석 및 Power Model을 이용해 서울 지점의 목표연도별 누적평균 강수량을 산정하였고 이를 통해 목표연도별 위치매개변수 및 축척매개변수를 구해 목표연도별 재현기간에 따른 확률강수량을 산정하였다. 선형회귀분석을 이용한 비정상성 빈도해석의 경우, 목표연도가 증가함에 따라 선형적인 증가에 의해 매우 높은 누적평균 강수량이 나타나 확률강수량의 경우에도 정상성임을 가정한 확률강수량에 비해 매우 높게 나타나 타당한 확률강수량이라 함에 한계가 있음을 보였다. 유역의 평균거동과 Logistic 회귀분석을 실시하여 확률강수량을 산정하였을 때에는, 선형 회귀분석에 비해 정상성임을 가정한 확률강수량보다 크게 증가하지 않고 비교적 안정적인 증가가 나타났다. 하지만 Logistic 회귀분석을 이용한 누적평균 강수량 산정에 있어서 목표연도 2040년에 도달하기 전에 미리 수렴하는 형태를 보여 모든 목표연도의 확률강수량이 동일한 값을 가지는 한계가 나타났다. 한강 유역의 평균거동과 Power Model을 이용한 비정상성 빈도해석의 경우, 선형회귀분석 및 Logistic 회귀분석을 통한 비정상성 빈도해석에서 나타난 문제점을 보완할 수 있는 확률강수량이 나타남을 보였다.

  • PDF