• Title/Summary/Keyword: nonsolvent-induced phase separation

Search Result 18, Processing Time 0.023 seconds

Solvent Filtration Performance of Thin Film Composite Membranes based on Polyethersulfone Support (폴리이터설폰 지지체를 활용한 박막복합막의 용매투과특성 연구)

  • Kim, SeungHwan;Kim, YooShin;Kim, DoYong;Kim, SooMin;Kim, Jeong F.
    • Membrane Journal
    • /
    • v.29 no.6
    • /
    • pp.348-354
    • /
    • 2019
  • Recently, the application range of organic solvent nanofiltration (OSN) technology has been expanding, requiring membranes with better performance. In this work, thin film composite (TFC) OSN membrane was fabricated. First, ultrafiltration support membrane was prepared via nonsolvent-induced phase separation (NIPS) technique using polysulfone (PSf) and polyethersulfone (PES). Then, the effect of pore forming additives such as polyvinylpyrrolidone (PVP) and pluronic F-127 were employed to improve the membrane permeance. The well-known interfacial polymerization technique was employed using MPD-TMC chemistry to form a thin film on top of the fabricated support, and its solvent permeance and nanofiltration performance was characterized. It was found that polyethersulfone support exhibited more reliable performance compared to polysulfone, and PVP additive was more effective compared to Pluronic F-127. As for the oSN performance, polar aprotic solvents like acetonitrile show significantly higher flux (986.5 L·m-2·h-1·bar-1) compared to water and EtOH (9.5 L·m-2·h-1·bar-1).

Intrinsic Porous Polymer-derived 3D Porous Carbon Electrodes for Electrical Double Layer Capacitor Applications (전기이중층 커패시터용 내재적 미세 다공성 고분자 기반 3차원 다공성 탄소 전극)

  • Han, Jae Hee;Suh, Dong Hack;Kim, Tae-Ho
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.759-764
    • /
    • 2018
  • 3D porous carbon electrodes (cNPIM), prepared by solution casting of a polymer of intrinsic microporosity (PIM-1) followed by nonsolvent-induced phase separation (NIPS) and carbonization are presented. In order to effectively control the pore size of 3D porous carbon structures, cNPIM was prepared by varying the THF ratio of mixed solvents. The SEM analysis revealed that cNPIMs have a unique 3D macroporous structure having a gradient pore structure, which is expected to grant a smooth and easy ion transfer capability as an electrode material. In addition, the cNPIMs presented a very large specific surface area ($2,101.1m^2/g$) with a narrow micropore size distribution (0.75 nm). Consequently, the cNPIM exhibits a high specific capacitance (304.8 F/g) and superior rate capability of 77% in an aqueous electrolyte. We believe that our approach can provide a variety of new 3D porous carbon materials for the application to an electrochemical energy storage.

Preparation and Gas Permeation Characteristics of Polyetherimide Hollow Fiber Membrane for the Application of Hydrogen Separation (수소분리를 위한 Polyetherimide계 고분자 중공사막의 제조 및 기체투과 특성)

  • Kwon, Hyeon Woong;Im, Kwang Seop;Kim, Ji Hyeon;Kim, Seong Heon;Kim, Do Hyeong;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.31 no.6
    • /
    • pp.456-470
    • /
    • 2021
  • In this study, polyetherimide-based hollow fiber membranes were manufactured using the NIPS (nonsolvent induced phase separation) method. THF, Ethanol, and LiNO3 were used as additives to control the morphology of the PEI-hollow fiber membranes. Furthermore, for the development of a high hydrogen separation membrane, the spinning conditions were optimized through the characterization of SEM and gas permeance. As a result, as the content of THF increased, the hydrogen/carbon dioxide selectivity increased. However, the permeance decreased due to the trade-off relationship. When ethanol was added, a finger-like structure was shown, and when LiNO3 was added, a sponge structure was shown. In particular, in the case of a hollow fiber membrane with an optimized PDMS coating layer, the permeance was 40 GPU and the hydrogen/carbon dioxide selectivity was 5.6.

Preparation and Characterization of Polysulfone Membranes Using PVP as an Additive (폴리비닐피롤리돈 첨가제를 이용한 폴리설폰막의 제조 및 특성 분석)

  • Lee, Jin Young;Lee, Kune Woo;Han, Myeong-Jin;Park, So-Jin
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.277-285
    • /
    • 2011
  • Polysulfone (PSf) membranes were prepared via the phase inversion process. Polyvinylpyrrolidone (PVP) was added as a nonsolvent additive in the casting solution containing a mixture of PSf and n-methylpyrrolidone. The added PVP played a role of enhancing liquid-liquid phase separation of the casting solution, and significantly reduced the solution fluidity. When prepared via the diffusion-induced process using water as a precipitation nonsolvent, the solidified membranes revealed a typical asymmetric structure irrespective of the addition of PVP. With 5 wt% PVP content, the finger-like cavities were more developed in the membrane sublayer compared to that of the membranes prepared without PVP. In contrast, with more than 10 wt% of PVP, the formation of finger-like cavities was suppressed, and the thickness of polymer nodule layer was increased. The surface porosity was also increased with the PSf content in the casting solution. The water permeability curve as a function of PVP addition revealed the inflection point. The maximum water permeability for 12 wt% PSf membrane was obtained with 5 wt% PVP content, and that for 18 wt% PSf membrane with 15 wt% PVP.

Comparison study of the effect of blending method on PVDF/PPTA blend membrane structure and performance

  • Li, Hongbin;Shi, Wenying;Zhang, Yufeng;Zhou, Rong
    • Membrane and Water Treatment
    • /
    • v.6 no.3
    • /
    • pp.205-224
    • /
    • 2015
  • A novel hydrophilic poly (vinylidene fluoride)/poly (p-phenylene terephthalamide) (PVDF/PPTA) blend membrane was prepared by in situ polycondensation of p-phenylene diamine (PPD) and terephthaloyl chloride (TPC) in PVDF solution with subsequent nonsolvent induced phase separation (NIPS) process. For comparison, conventional solution blend membrane was prepared directly by adding PVDF powder into PPTA polycondensation solution. Blend membranes were characterized by means of viscometry, X-ray photoelectron spectroscopy (XPS), Field Emission Scanning Electron Microscopy (FESEM). The effects of different blending methods on membrane performance including water contact angle (WCA), mechanical strength, anti-fouling and anti-compression properties were investigated and compared. Stronger interactions between PVDF and PPTA in in situ blend membranes were verified by viscosity and XPS analysis. The incorporation of PPTA accelerated the demixing rate and caused the formation of a more porous structure in blend membranes. In situ blend membranes exhibited better hydrophilicity and higher tensile strength. The optimal values of WCA and tensile strength were $65^{\circ}$ and 34.1 MPa, which were reduced by 26.1% and increased by 26.3% compared with pure PVDF membrane. Additionally, antifouling properties of in situ blend membranes were greatly improved than pure PVDF membrane with an increasing of flux recovery ratio by 25%. Excellent anti-compression properties were obtained in in situ blend membranes with a stable pore morphology. The correlations among membrane formation mechanism, structure and performance were also discussed.

Fabrication of K-PHI Zeolite Coated Alumina Hollow Fiber Membrane and Study on Removal Characteristics of Metal Ions in Lignin Wastewater

  • Zhuang, XueLong;Shin, Min Chang;Jeong, Byeong Jun;Lee, Seung Hwan;Park, Jung Hoon
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.174-179
    • /
    • 2021
  • Recently, hybrid coal research is underway to upgrade low-grade coal. The hybrid coal is made by mixing low-grade coal with bioliquids such as molasses, sugar cane, and lignin. In the case of lignin used here, a large amount of lignin is included in the wastewater of the papermaking process, and thus, research on hybrid coal production using the same is attracting attention. However, since a large amount of metal ions are contained in the lignin wastewater from the papermaking process, substances that corrode the generator are generated during combustion, and the amount of fly ash is increased. To solve this problem, it is essential to remove metal ions in the lignin wastewater. In this study, metal ions were removed by ion exchange with a alumina hollow fiber membrane coated with K-Phillipsite (K-PHI) zeolite. The alumina hollow fiber membrane used as the support was prepared by the nonsolvent induced phase separation (NIPS) method, and K-PHI seeds were prepared by hydrothermal synthesis. The prepared K-PHI seed was seeded on the surface of the support and coated by secondary growth hydrothermal synthesis. The characteristic of prepared coating membrane was analyzed by Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), Energy Dispersive Spectroscopy (EDX), and the concentration of metal ions before and after ion exchange was measured by Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES). The extraction amount of K+ is 86 mg/kg, and the extraction amount of Na+ is 54.9 mg/kg. Therefore, K-PHI zeolite membrane has the potential to remove potassium and sodium ions from the solution and can be used in acidic lignin wastewater.

Improving Physical Fouling Tolerance of PES Filtration Membranes by Using Double-layer Casting Methods (PES 여과막의 물리적 막오염 개선을 위한 기공 구조 개선 연구)

  • Chang-Hun Kim;Youngmin Yoo;In-Chul Kim;Seung-Eun Nam;Jung-Hyun Lee;Youngbin Baek;Young Hoon Cho
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.191-200
    • /
    • 2023
  • Polyethersulfone (PES) is a widely employed membrane material for water and industrial purification applications owing to its hydrophilicity and ease of phase separation. However, PES membranes and filters prepared using the nonsolvent induced phase separation method often encounter significant flux decline due to pore clogging and cake layer formation on the dense membrane surfaces. Our investigation revealed that tight microfiltration or loose ultrafiltration membranes can be subject to physical fouling due to the formation of a dense skin layer on the bottom side caused by water intrusion to the gap between the shrank membrane and the substrate. To investigate the effect of the bottom surface porosity on membrane fouling, two membranes with the same selective layers but different sub-layer structures were prepared using single and double layer casting methods, respectively. The double layered PES membrane with highly porous bottom surface showed high flux and physical fouling tolerance compared to the pristine single layer membrane. This study highlights the importance of physical optimization of the membrane structure to prevent membrane fouling.

Preparation and Characteristics of P(AN-co-MA) Membrane Imprinted with Lysozyme Molecules (라이소자임 분자각인 P(AN-co-MA) 막의 제조와 특성)

  • Min, Kyoung Won;Yoo, Anna;Youm, Kyung Ho
    • Membrane Journal
    • /
    • v.31 no.3
    • /
    • pp.219-227
    • /
    • 2021
  • Molecularly imprinted membrane (MIM) is a porous polymer membrane incorporating with the molecular recognizing sites. In this study, the supporting P(AN-co-MA) asymmetric membrane was prepared by nonsolvent induced phase separation (NIPS) method. And then, MIM with lysozyme template sites was prepared using the surface imprinting method on the P(AN-co-MA) asymmetric membrane introducing a photoactive iniferter and then photo-grafting. The P(AN-co-MA) asymmetric membrane was modified with 3-chloropropyltrimethoxysilane and dithiocarbamate as a photoactive iniferter. To prepare a lysozyme imprinted membrane, the modified P(AN-co-MA) membrane was copolymerized with acrylamide as a functional momomer, N,N'-methylene bisacrylamide as a crosslinker and lysozyme as a template in the UV irradiation environment. The lysozyme imprinted MIM was analyzed by using SEM, FT-IR and EDS measurements. Its results confirm that all the P(AN-co-MA) membranes have an asymmetric structure and the iniferter group is successfully introduced on the membrane surface. The process parameters were adjusted to obtain MIM having the excellent lysozyme adsorption. The maximum lysozyme adsorption capacity reaches at 2.7 mg/g, which is 13 times higher than that of the non imprinted membrane (NIM). The permselective membrane filtration experiments of ovalbumin to lysozyme show that the P(AN-co-MA) MIM preferentially bounds a greater amount of lysozyme.