• Title/Summary/Keyword: nonpremixed flame

Search Result 111, Processing Time 0.024 seconds

Simultaneous PIV/OH PLIF Measurements in Hydrogen Nonpremixed Flames with Coaxial Air (PIV/OH PLIF 동시 측정을 이용한 동축공기 수소확산화염의 실험적 연구)

  • Kim, Mun-Ki;Kim, Seung-Han;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.115-123
    • /
    • 2003
  • Simultaneous measurements of velocity and OH distribution were made using particle image velocimetry(PIV) and planar laser-induced fluorescence(PLIF) of OH radical in turbulent hydrogen nonpremixed flames with coaxial air. The OH radical was used as an approximate indicator of chemical reaction zone. The OH layer was correlated well with the stoichiometric velocity, $U_s$, instantaneously and on average. In addition, high strain-rate regions almost coincide with the OH distribution. The residence time in flame surface, calculated from the root-mean-square value of the radial velocity, is proportional to $(x/d_F)^{0.7}$. It is found that the mean value of principal strain rate on the OH layer can be scaled with $(x/d_F)^{-0.7}$ and therefore, the product of the residence time and the mean strain rate remains constant over all axial positions.

  • PDF

Transported PDF Model for Turbulent Nonpremixed Flames (수송 확률밀도함수모델을 이용한 비예혼합 난류화염장 해석)

  • Lee, Jeong-Won;Seok, Joon-Ho;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.2
    • /
    • pp.32-41
    • /
    • 2009
  • The transported probability density function model combined with the consistent finite volume (FV) method has been applied to simulate the turbulent bluff-body reacting flows. To realistically account for the non-isotropic turbulence effects on the turbulent bluff-body reacting flows, the present PDF transport approach is based on the joint velocity- turbulent frequency-composition PDF formulation. The evolution of the fluctuating velocity of a particle is modeled by a simplified Langevin equation and the particle turbulence frequency is represented by the modified Jayesh - Pope model. Effects of molecular diffusion are represented by the interaction by exchange with the mean (IEM) mixing model. To validate this hybrid FV/PDF transport model, the numerical results are compared with experimental data for the turbulent bluff-body reacting flows.

  • PDF

Measured Effect of Shock Wave on the Stability Limits of Supersonic Hydrogen-Air Flames (충격파가 초음속 수소-공기 화염의 안정한계에 미치는 영향)

  • Hwanil Huh
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.86-94
    • /
    • 1999
  • Measured shock wave effects were investigated by changing shock strength and position with particular emphasis on the stability limits of hydrogen-air jet flames. For this purpose, a supersonic nonpremixed, jet-like flame was stabilized along the axis of a Mach 2.5 wind tunnel, and wedges were mounted on the sidewall in order to interact oblique shock waves with the flame. This experiment was the first reacting flow experiment interacting with shock waves. Schilieren visualization pictures, wall static pressures, and flame stability limits were measured and compared to corresponding flames without shock-flame interaction. Substantial improvements in the flame stability limits were achieved by properly interacting the shock waves with the flameholding recirculation zone. The reason for the significant improvement in flame stability limits is believed to be the adverse pressure gradient caused by the shock, which can elongate the recirculation zone.

  • PDF

NOx Formation Characteristics with Oxygen Enrichment in Nonpremixed Counterflow Flames (비예혼합 대향류화염에서 산소부화에 따른 NOx 생성특성)

  • Lee, Chang-Eon;Hwang, Cheol-Hong;Yoo, Byung-Hun;Han, Ji-Woong
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.4
    • /
    • pp.17-22
    • /
    • 2007
  • The NOx emission characteristics with oxygen enrichment in non-premixed counterflow flames were investigated numerically. To consider systematically the situation of inevitable $N_2$ contamination by air infiltration in the process of pure-oxygen combustion, the volume ratio of $O_2$ in an oxidizer was changed from 21% to 100%. As a result the NO emission index $(EI_{NO})$ has the highest value under condition of 75% oxygen enrichment. This result can be explained by the change of $N_2$ destruction rate with oxygen enrichment rather than flame temperature, flame thickness and residence time. In particular, it was found that the reaction of N+NO=$N_2+O$ has the largest contribution on NOx production in oxygen-enrichment flames.

  • PDF

Numerical Prediction of NOx in the Nonpremixed Hydrogen-Air Flame using the Quasi-Laminar Reaction Modelling (준충류 근사를 이용한 수소-공기 비예혼합화염의 질소산화물 생성예측)

  • Kim, Seong-Lyong;Jeung, In-Seuck;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.1
    • /
    • pp.131-139
    • /
    • 1999
  • A Numerical Analysis of NOx production in Hydrogen-Air flame is performed using the quasi-laminar reaction modelling. As results, in low global strain rate region, $U_F/D_F\;{\leq}\;50,000$, the quasi-laminar reaction modelling reproduces the experimentally observed EINOx half power scaling that the ratio of EINOx and flame residence time, $L_f^3(D_F^2U_F)$, is proportional to the square root of global strain rate. Thus, it suggests that turbulence-chemistry interaction has a minor impact on the trend of NOx production in low global strain rate region. However, the quasi-laminar reaction modelling predicts the higher temperature and NOx than experimentally observed. This overprediction may be due to the lack of radiation and quasi-laminar reaction modelling.

  • PDF

Investigation of Velocity Boundary Conditions in Counterflow Flames

  • Park, Woe-Chul;Anthony Hamins
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.262-269
    • /
    • 2002
  • The effects of velocity boundary conditions on the structure of methane-air nonpremixed counterflow flames were investigated by two-dimensional numerical simulation. Two low global strain rates, 12 s$\^$-1/ and 20 s$\^$-1/, were considered for comparison with measurements. Buoyancy was conformed to have strong effects on the flame structure at a low global strain rate. It was shown that the location where a top hat velocity profile was imposed is sensitive to the flame structure, and that the computed temperature along the centerline agrees well with the measurements when plug flow was imposed at the inner surface of the screen nearest the duct exit.

Characteristics of Interacting Lifted Flames (상호작용하는 부상화염의 특성에 관한 연구)

  • Lee, Seung;Lee, Byeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.461-466
    • /
    • 2001
  • The characteristics of nonpremixed interacting flames are investigated in the parameter of nozzle configuration and nozzle separation distane, s. Three nozzle arrangements - diamond 4 nozzle, linear 5 nozzle and cross 5 nozzle- are used. When s is about 10 nozzle diameter, flames lift from the nozzle at the highest fuel flowrate compared with the other s cases. Normally flames are extinguished at the lifted states. Flowrates when blowout occurs are affected by the nozzle configuration, nozzle seperation distance. Blowout flowrates for the diamond- or cross-shaped nozzle cases are parabolic function of s. For 5 cross nozzle case, flames extinguished at 3.3 times higher flowrate than that of single equivalent area nozzle. Turbulent liftoff heights are not function of flowrates for these cases.

Effects of Swirl number and Pressure on Flame Structure of Supercritical Kerosene Propellant Subscale Injector (선회수와 압력이 초임계상태 케로신 추진제 축소형 다중분사기의 화염구조에 미치는 영향 해석)

  • Park, Sangwoon;Kim, Taehoon;Kim, Yongmo
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.81-82
    • /
    • 2013
  • This study has been mainly motivated to numerically model the supercritical mixing and combustion processes encountered in the liquid propellant rocket engines. In the present approach, turbulence is represented by the standard k-e model. To account for the real fluid effects, the propellant mixture properties are calculated by using generalized cubic equation of state. In order to realistically represent the turbulence-chemistry interaction in the turbulent nonpremixed flames, the flamelet approach based on the real fluid flamelet library has been adopted. Based on numerical results, the detailed discussions are made for the effects of swirl on flame structure of supercritical kerosene liquid propellant combustion.

  • PDF

How to Prepare the Manuscript for Submission to the Proceedings of KSPE Conference (비예혼합화염과 예혼합화염의 속도 섭동에 따른 응답 특성)

  • Ahn, Myunggeun;Kim, Taesung;Yoon, Youngbin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.612-616
    • /
    • 2017
  • An experimental study investigates the flame response characteristics of non-premixed flame and premixed flame. Air was used as the oxidant. Hydrogen($H_2$)/methane($CH_4$) was used as the fuel, and the mixing ratio of the fuel was 50/50%. Flame response characteristics for various velocity perturbations were experimented. The flame images was acquired using the OH fluorescence measurement and the images were digitized using MatLab code. The results of the premixed flame show that flame perturbation increases as the oscillation amplitude increases. As the amplitude increases, the gain value of the flame transfer function is observed to be a linear behavior. The flame length of a nonpremixed flame decreases as the oscillation amplitude increases. Also, it was confirmed that the gain value according to the amplitude behaves nonlinearly.

  • PDF

CO2 Suppression Characteristics of the Nitrogen-diluted Methane Counterflow Non-premixed Flame (질소로 희석된 대향류 메탄 비예혼합화염에서 CO2에 의한 소화특성)

  • Lee, Ho-Hyun;Oh, Chang Bo;Hwang, Cheol Hong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.2
    • /
    • pp.42-48
    • /
    • 2013
  • The $CO_2$ suppression characteristics and flame structure of nitrogen-diluted methane counterflow non-premixed flame were studied experimentally and numerically. To mimic a situation where combustion product gases are entrained into a compartment fire, fuel stream was diluted with $N_2$. A gas-phase suppression agent, $CO_2$, was diluted in the air-stream to investigate the suppression characteristics by the agent. For numerical simulation, an one-dimensional OPPDIF code was used for comparison with experimental results. An optically-thin radiation model(OTM) was adopted to consider radiation effects on the suppression characteristics. It was confirmed experimentally and numerically that suppression limit decreased with increasing nitrogen mole fraction in the fuel stream. A turning point was found only when a radiation heat loss was considered and the extinguishing concentration for turning point was differently predicted compared to the experiment result. Critical extinguishing concentration when neglecting radiation heat loss was also differently predicted compared with the experimental result.