• Title/Summary/Keyword: nonpremixed flame

Search Result 111, Processing Time 0.026 seconds

Unsteady Flamelet Modeling of Turbulent Nonpremixed Flames (비정상 층류화염편 모델을 이용한 비예혼합 난류화염 해석)

  • Kim, Seong-Ku;Kang, Sung-Mo;Kim, Yong-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.133-141
    • /
    • 2000
  • The present study is focused on modeling the transient behavior of the local flame structure which is especially important for slow reaction processes, such as NOx formation in the radiating flame field. The recently developed unsteady flamelet model has been applied to analyze a steady, turbulent jet flame. Numerical results are compared with experimental data and numerical results of the conventional steady flamelet model. The numerical result reveals that the unsteady flamelet model correctly predicts the nonequilibrium effect upsteam and the subsequent decay of the superequilibrium radical concentrations the further downstream.

  • PDF

A Study on the Visualization of NO Concentration Distributions in $CH_4/O_2N_2$ Premixed Flames by PLIF (평면 레이저 유도 형광법(PLIF)을 이용한 $CH_4/O_2N_2$ 예혼합화염의 NO 농도 분포 가시화에 관한 연구)

  • Park, Kyoung-Suk;Lee, Sei-Hwan
    • Journal of ILASS-Korea
    • /
    • v.6 no.3
    • /
    • pp.1-7
    • /
    • 2001
  • In this study, quantitative measurement of nitric oxide concentration distributions visualization were investigated in the laminar $CH_4/O_2N_2$ nixed flame by Planar laser-induced fluorescence(PLIF). The NO A-X (0,0) vibrational band around 226nm was excited using a XeCl excimer-pumped dye laser. Selecting an appropriate NO transition minimizes interference from Rayleigh scattering and $O_2$ fluorescence. The measurements were taken in $CH_4/O_2N_2$ premixed flame with equivalence ratios varying from $1.0{\sim}1.6$, and a fixed flow rate of 3slpm. NO was found to produce primarily between an inner premixed and an outer nonpremixed flame front, and total NO concentration is raised when equivalence ratios increase. These results suggest that prompt NO is likely to contribute to MO formation in $CH_4/O_2N_2$ premixed flame. Furthermore, this trend was well matched with previous works.

  • PDF

Unsteady Flamelet Modeling of Turbulent Nonpremixed Flames (비정상 층류화염편 모델을 이용한 비예혼합 난류화염 해석)

  • Kim, Seong-Ku;Kang, Sung-Mo;Seo, Bo-Sun;Kim, Yong-Mo
    • Journal of ILASS-Korea
    • /
    • v.6 no.3
    • /
    • pp.8-16
    • /
    • 2001
  • The present study is focused on modeling the transient behavior of the local flame structure which is especially important for slow reaction processes, such as NOx formation in the radiating flame field. The unsteady flamelet model recently developed has been applied to analyze a steady, turbulent jet flame. Numerical results are compared with experimental data and numerical results of the conventional steady flamelet model. The numerical result reveals that the unsteady flamelet model correctly predicts the nonequilibrium effect upsteam and the subsequent decay of the superequilibrium radical concentrations further downstream.

  • PDF

Investigation of Effects of Duct Thickness an Counterflow Flam Structure (닥트두께가 대향류 화염구조에 미치는 영향의 조사)

  • Park, Woe-Chul;Ko, Kyung-Chan
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.61-65
    • /
    • 2002
  • Nonpremixed counterflow flames at low strain rates, $ag=12s^{-1}$ and $12s^{-1}$, were numerically simulated to investigate the effects of the duct thickness on the flame structure in normal gravity. For small values of the duct thickness, the positions of the flame and stagnation point were highly sensitive to the duct thickness. When the duct thickness was greater than 6mm, however, the effects of the duct thickness on the flame structure were negligible. The computed temperature along the duct centerline agreed well with measurements.

An Experimental Study on the Flame Structure of Partially Premixed Flame using OH PLIF (OH PLIF를 이용한 부분 예혼합 화염의 화염구조에 관한 실험적 연구)

  • Lee, Seung-Young;Lee, Jong-Ho;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.54-59
    • /
    • 2001
  • OH radical concentration have been measured in a methane-air partially premixed flames using PLIF. Excitation lines were selected $Q_{1}(6)$ branch, (1,0) band. The system is consisted of Nd:YAG laser, dye laser and frequency doubler to make pump beam for OH radical. On the direct photographs, flame height increases as fuel flow rate and equivalence ratio increase. And on the PLIF images, OH radical is distributed from premixed flame front to nonpremixed flame front through the flame structure with all equivalence ratio. OH overall concentrations increase with equivalence ratio. At the stoichiometric equivalence ratio, the peak of OH radical concentration exists strongly near the inner cone. As equivalence ratio is changed to richer, OH radical distribution goes thinly and the peak is increased as longitudinal direction. As the flow goes to the downstream, OH radical concentration decreases and broadens, because OH radical reacts with another species after OH formation at the initial oxidization. This phenomenon resembles radial distribution. At the l00cc fuel flowrate, the radial peak of OH radical exists from x/R=l.0 to 1.5.

  • PDF

Computation of a Low Strain Rate Counterflow Flame in Normal and Zero Gravity (정상중력 및 무중력에서의 저변형율 대향류화염의 전산)

  • Woe-Chul Park
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.3
    • /
    • pp.107-111
    • /
    • 2002
  • A near extinction nonpremixed counterflow flame of 19% methane diluted by 81% nitrogen by volume and undiluted air at a low global strain rate, 20 s-1, was computed. Investigations were focused on effects of the duct thickness and velocity boundary conditions on the flame structure in normal and zero gravity conditions. The results showed that, under normal gravity conditions, the effects of the duct thickness and velocity boundary conditions were significant by shifting the flame position, but negligible in zero gravity. The differences in flame structure were caused by buoyancy, and hence should be considered in the measurements in normal gravity.

Investigation of Effects of Shield Gas on Counterflow Flame Structure (차폐가스가 대향류 화염구조에 미치는 영향의 조사)

  • Park, Woe-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.2
    • /
    • pp.112-117
    • /
    • 2002
  • The effects of shield gas on the structure of methane-air nonpremixed counterflow flames were numerically investigated. The near extinction flame of a low global strain rate 20 $s^{-1}$ of 19% methane diluted by 81% nitrogen by volume and undiluted air was computed. The flame shape, centerline temperature and axial velocity profiles were compared for different velocity of the shield gas and with and without the shield gas. The effects of the velocity of the shield gas were negligible for $V_{S}/V_{F}{\leq}2$ in normal gravity. Under normal gravity conditions, the flame shape and its position with the shield gas were different from those of the flame without the shield gas, whereas no discernible effects of the shield gas along the centerline were observed in zero gravity.

Laminar Flamelet Modeling of Combustion Processes and NO Formation in Nonpremixed Turbulent Jet Flames (Laminar Flamelet Model을 이용한 비예혼합 난류제트화염의 연소과정 및 NO 생성 해석)

  • Kim, Seong-Ku;Kim, Hoo-Joong;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.2
    • /
    • pp.51-62
    • /
    • 1999
  • NOx formation in turbulent flames is strongly coupled with temperature, superequilibrium concentration of O radical, and residence time. This implies that in order to accurately predict NO level, it is necessary to develop sophisticated models able to account for the complex turbulent combustion processes including turbulence/chemistry interaction and radiative heat transfer. The present study numerically investigates the turbulent nonpremixed hydrogen jet flames using the laminar flamelet model. Flamelet library is constructed by solving the modified Peters equations and the turbulent combustion model is extended to nonadiabatic flame by introducing the enthalpy defect. The effects of turbulent fluctuation are taken into account by the presumed joint PDFs for mixture fraction, scalar dissipation rate, and enthalpy defect. The predictive capability of the present model has been validated against the detailed experimental data. Effects of nonequilibrium chemistry and radiative heat loss on the thermal NO formation are discussed in detail.

  • PDF

Analysis of NO Formation in Nonpremixed Hydrogen-Air Flames Considering Turbulence-Chemistry Interaction (난류연소 모델링을 이용한 수소-공기 비예혼합 화염의 NOx 생성 분석)

  • Park, Y.H.;Moon, H.J.;Kim, S.Y.;Yoon, Y.;Jeong, I.S.
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.71-79
    • /
    • 1999
  • Numerical analysis on the characteristics of nitrogen oxides (NOx) formation in turbulent nonpremixed hydrogen-air flames was carried out. Lagrange IEM model and Assumed PDF model were applied to consider turbulence-chemistry interaction known to affect the production of NOx. Partial equilibrium assumption was used to predict nonequilibrium effect to which one-half power dependence between EINOx normalized by flame residence time and global strain rate is attributed. As a result. such one-half power dependence could be reproduced only by reaction model including $HO_{2}$and $H_{2}O_{2}$, which means its dependence on Damkohler number; nonequilibrium effect. This dependence was shown better in the region of higher global strain. Besides, the improvement of turbulence model is required to predict mean flow properties quantitatively in the radial direction.

  • PDF

Laminar Flamelet Modeling of Combustion Processes and NO Formation in Nonpremixed Turbulent Jet Flames (Laminar Flamelet Model을 이용한 비예혼합 난류제트화염의 연소과정 및 NO 생성 해석)

  • Kim, Seong-Ku;Kim, Hoo-Joong;Kim, Yong-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.93-104
    • /
    • 1999
  • NOx formation in turbulent flames is strongly coupled with temperature, superequilibrium concentration of O radical, and residence time. This implies that in order to accurately predict NO level, it is necessary to develop sophisticated models able to account for the complex turbulent combustion processes including turbulence/chemistry interaction and radiative heat transfer. The present study numerically investigates the turbulent nonpremixed hydrogen jet flames using the laminar flamelet model. Flamelet library is constructed by solving the modified Peters equations and the turbulent combustion model is extended to nonadiabatic flame by introducing the enthalpy defect. The effects of turbulent fluctuation are taken into account by the presumed joint PDFs for mixture fraction, scalar dissipation rate, and enthalpy defect. The predictive capability of the present model has been validated against the detailed experimental data. Effects of nonequilibrium chemistry and radiative heat loss on the thermal NO formation are discussed in detail.

  • PDF